测绘通报 ›› 2021, Vol. 0 ›› Issue (8): 119-122.doi: 10.13474/j.cnki.11-2246.2021.0254

• 技术交流 • 上一篇    下一篇

RGB-D SLAM在室内高精度三维测图中的应用

范军林1, 肖斌1, 涂梨平1, 胡全一1, 师现杰2, 危双丰2   

  1. 1. 江西核工业测绘院集团有限公司, 江西 南昌 330038;
    2. 北京建筑大学测绘与城市空间信息学院, 北京 102616
  • 收稿日期:2020-12-22 出版日期:2021-08-25 发布日期:2021-08-30
  • 通讯作者: 肖斌。E-mail:108707557@qq.com
  • 作者简介:范军林(1982-),男,硕士,高级工程师,主要从事三维测图技术研究与应用。E-mail:171256620@qq.com

Application of RGB-D SLAM technology for indoor high-precision 3D mapping

FAN Junlin1, XIAO Bin1, TU Liping1, HU Quanyi1, SHI Xianjie2, WEI Shuangfeng2   

  1. 1. Jiangxi Nuclear Industry Surveying and Mapping Institute Group Co., Ltd., Nanchang 330038, China;
    2. School of Geomatics & Urban Spatial Informatics, Beijing University of Civil Engineering & Architecture, Beijing 102616, China
  • Received:2020-12-22 Online:2021-08-25 Published:2021-08-30

摘要: 高精度三维测图是室内三维制图的重要支撑,基于三维激光雷达扫描技术的三维测图成本高,需要提前布置标靶,在室内复杂环境中易导致数据不完整;基于图像序列的三维重建建模时间长,易受多种因素影响。针对以上问题,本文将RGB-D SLAM技术应用于室内高精度三维测图中。通过将深度相机与SLAM技术相结合,计算相机位姿并恢复三维空间信息,获取室内三维点云模型,并以目标物实际量测为基准评价密集点云精度。试验结果表明,该方法可快速获取精度较高的三维点云模型,成本低且效率高,能够较好地满足应用需求。

关键词: 深度相机, 同时定位与地图构建(SLAM), 三维测图, 回环检测, 后端优化

Abstract: High-precision 3D mapping is an important support for indoor 3D mapping. 3D mapping based on 3D LiDAR scanning technology is costly, requires the advance arrangement of targets, is prone to incomplete data in complex indoor environments, takes a long time to model 3D reconstruction based on image sequences, and is susceptible to a variety of factors. To address these problems, this paper applies RGB-D SLAM technology to indoor high-precision 3D mapping. By combining the depth camera with SLAM technology, the camera poses are calculated and 3D spatial information is recovered to obtain indoor 3D point cloud models, and the dense point cloud accuracy is evaluated with the actual measurement of the target object as the benchmark. The experimental results show that the method can quickly obtain high-precision 3D point cloud models with low cost and high efficiency, which can well meet the application requirements.

Key words: deep cameras, simultaneous localization and mapping(SLAM), 3D mapping, loopback detection, back-end optimisation

中图分类号: