测绘通报 ›› 2022, Vol. 0 ›› Issue (10): 7-12.doi: 10.13474/j.cnki.11-2246.2022.0287

• 滑坡识别与评价 • 上一篇    下一篇

北斗监测滑坡及其梯度增强多元回归位移预测

明璐璐1, 高品红2, 刘宇航3, 王鹏4, 涂梨平5, 柯福阳1,6   

  1. 1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210440;
    2. 浙江华东建设工程有限公司, 浙江 杭州 310014;
    3. 西宁市测绘院, 青海 西宁 810001;
    4. 西宁市国土勘测规划研究院, 青海 西宁 810000;
    5. 江西核工业测绘院集团有限公司, 江西 南昌 330038;
    6. 南京信息工程 大学无锡研究院, 江苏 无锡 214000
  • 收稿日期:2022-06-21 发布日期:2022-11-02
  • 作者简介:明璐璐(1998-),女,硕士生,主要研究方向为空天地滑坡监测与降水之间的关系。E-mail:476458012@qq.com
  • 基金资助:
    江西省重点研发计划(20201BBG71001);无锡市科技发展资金项目(N20201011)

Landslide monitoring in BeiDou and displacement prediction based on GBR

MING Lulu1, GAO Pinhong2, LIU Yuhang3, WANG Peng4, TU Liping5, KE Fuyang1,6   

  1. 1. School of Remote Sensing and Surveying engineering, Nanjing University of Information Science and Technology, Nanjing 210440, China;
    2. Zhejiang Huadong Construction Engineering Co., Ltd., Hangzhou 310014, China;
    3. Xining Surveying and Mapping Institute, Xining 810001, China;
    4. Xining Land Survey and Planning Research Institute, Xining 810000, China;
    5. Jiangxi Nuclear Industry Surveying and Mapping Institute Group Co., Ltd., Nanchang 330038, China;
    6. Wuxi Research Institute, Nanjing University of Information Science and Technology, Wuxi 214000, China
  • Received:2022-06-21 Published:2022-11-02

摘要: 山体滑坡位移量预测精度主要受预测模型和参量的影响,而基于回归模型和灰度预测模型的传统滑坡预测模型主要存在模型预测结构单调、引入的预测影响参量不全面、长期性预测精度低等问题,因此,本文基于北斗数据提出了一种基于梯度增强多元回归算法的滑坡预测方法。梯度增强多元回归模型在考虑多重因素的前提下,使用如降水量、土壤湿度、地形参数等滑坡主影响因子作为回归模型参量,同时结合梯度增强方法,可以增强预测模型的有效结构,提升数据的使用率,进而提高长、短期的滑坡位移量预测精度。最后以西宁市南山寺滑坡带为例,考虑降水、地面沉降、地形地貌等诱发滑坡的关键因素,分别基于梯度增强多元回归模型、贝叶斯岭回归模型、弹性网络回归模型及支持向量机回归模型进行试验。结果表明,梯度增强多元回归模型的方差(EV)结果为0.99mm2,均方差(MSE)结果为0.04mm,平均绝对误差(MAE)结果为0.15mm,且利用梯度增强多元回归模型对2020年12月的表面位移量进行预测,发现相对误差区间为(-0.8%,0.8%],预测精度最高。因此,相对而言,梯度增强多元回归预测模型精度更优、效率更高,更能准确反映滑坡表面位移量的变化状态,精确地对滑坡体进行全天候监控、预警,保障滑坡体周边环境的安全。

关键词: 滑坡位移, 北斗监测, 预测, 梯度增强多元回归模型

Abstract: The accurate prediction of landslide displacement is mainly affected by the prediction model and parameters. Traditional landslide prediction models, such as regression model and grey prediction model, have the shortcomings of single factor and low accuracy of long-term prediction. However, gradient enhanced multiple regression model can realize long-term prediction of landslide surface displacement on the basis of considering multiple factors, which can effectively make up for the above shortcomings. At last, it will be used in nanshan landslide in xining city as an example, based on the various influence factors of landslide, merit-based landslide induced key factors (precipitation, geological structure, topography). And a variety of methods are used for comparative analysis, including gradient boosting regression, Bayesian ridge, elastic net and support vector regression of four model. Experimental results show that the EV, MSE and MAE of GBR are 0.99 mm2, 0.04 mm and 0.15 mm, respectively. In addition, GBR is used to predict the surface displacement in December 2020, and the relative error is found in the range from-0.8% to 0.8%. The prediction accuracy is the highest. Therefore, the gradient enhanced multiple regression prediction model is relatively more accurate and efficient. It can accurately reflect the change state of landslide surface displacement, accurately monitor and warn the landslide body all day long, and ensure the safety of the surrounding environment of the landslide body.

Key words: landslide, BeiDou monitoring, prediction, gradient boosting regression

中图分类号: