测绘通报 ›› 2023, Vol. 0 ›› Issue (10): 135-139.doi: 10.13474/j.cnki.11-2246.2023.0308

• 技术交流 • 上一篇    下一篇

融合聚类算法的钢轨轮廓点云自适应精简

张海山1, 张正军2, 宋宗莹1, 柳红利2, 姜大佐3, 曾杉4   

  1. 1. 中国神华能源股份有限公司, 北京 100011;
    2. 中科吉芯(秦皇岛)信息技术有限公司, 河北 秦皇岛 066000;
    3. 国能包神铁路集团有限责任公司, 内蒙古 包头 014000;
    4. 中国科学院地理科学与资源研究所, 北京 100101
  • 收稿日期:2023-04-06 发布日期:2023-10-28
  • 通讯作者: 曾杉。E-mail:zs@lreis.ac.cn
  • 作者简介:张海山(1969-),男,硕士,高级工程师,主要从事铁路运输、科技创新及工程管理等方面的工作。E-mail:10000365@ceic.com
  • 基金资助:
    中国神华能源股份有限公司科技项目(SHGF-21-02)

The adaptive simplification of rail profile point cloud using fusion clustering algorithm

ZHANG Haishan1, ZHANG Zhengjun2, SONG Zongying1, LIU Hongli2, JIANG Dazuo3, ZENG Shan4   

  1. 1. China Shenhua Energy Co., Ltd., Beijing 100011, China;
    2. Digitwinology International Co., Ltd., Qinhuangdao 066000, China;
    3. Guoneng Baoshen Railway Group Co., Ltd., Baotou 014000, China;
    4. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
  • Received:2023-04-06 Published:2023-10-28

摘要: 针对原始结构光钢轨轮廓点云数据量大、强噪声和离群杂点多的问题,本文提出了一种欧式聚类融合多种传统滤波方式的钢轨点云自适应精简的方法。采用点云欧式距离为特征量的聚类分割方法用于无效杂散点数据的识别和精简,采用统计滤波结合均匀体素下采样滤波方法实现点云初步去噪。在此基础上,通过欧式聚类分割噪点,采用自动获取滤波范围的自适应直通滤波去除轨底粘连数据,以保证点云配准的效率与准确性。本文提出的方法可有效精简无效数据和去噪,点云精简比约为94%,同时保留了原始点云的有效轮廓特征,为点云配准与磨耗点的高精度识别奠定了基础。

关键词: 点云精简, 点云滤波, 欧式距离, 聚类分割, 自适应直通滤波

Abstract: To address the problems of large data volume,strong noise,and abundant outliers in the raw structured light rail profile point cloud data,this paper proposes a rail point cloud adaptive simplification method that combines Euclidean clustering with various traditional filtering methods. A clustering segmentation method based on the Euclidean distance of point clouds is proposed to identify and simplify invalid scattered point data. A statistical filter combined with uniform voxel down sampling is used for initial noise reduction. Based on this,Segmentation of noise by Euclidean clusters,an adaptive pass-through filter that automatically acquires the filtering range is used to remove rail bottom adhesion data to ensure the efficiency and accuracy of point cloud registration. The proposed method can effectively simplify invalid data and reduce noise,achieving a point cloud simplification rate of about 94%,while retaining the effective profile features of the original point cloud,which lays the foundation for high-precision identification of point cloud registration and wear points.

Key words: point cloud reduction, point cloud filtering, Euclidean distance, segmentation by cluster, adaptive pass-through filtering

中图分类号: