测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 82-87.doi: 10.13474/j.cnki.11-2246.2023.0332

• 学术研究 • 上一篇    下一篇

多级索引框及移动向量联合的接触网提取方法

林凯伦1, 杨元维1,2, 高贤君1,2,3, 谭美淋4, 张跃1   

  1. 1. 长江大学地球科学学院, 湖北 武汉 430100;
    2. 湖南科技大学测绘遥感信息工程湖南省重点试验室, 湖南 湘潭 411201;
    3. 东华理工大学自然资源部环鄱阳湖区域矿山环境监测与治理重点试验室, 江西 南昌 330013;
    4. 内蒙古自治区测绘地理信息中心, 内蒙古 呼和浩特 010050
  • 收稿日期:2023-02-15 出版日期:2023-11-25 发布日期:2023-12-07
  • 通讯作者: 杨元维。E-mail:yyw_08@163.com
  • 作者简介:林凯伦(1999—),男,硕士生,主要研究方向为三维点云。E-mail:1418208258@qq.com
  • 基金资助:
    自然资源部环鄱阳湖区域矿山环境监测与治理重点试验室开放基金(MEMI-2021-2022-08);城市轨道交通数字化建设与测评技术国家工程试验室开放课题基金(2021ZH02);湖南科技大学测绘遥感信息工程湖南省重点试验室开放基金(E22133;E22205)

Catenary extraction method combined with multi-level index frame and motion vector

LIN Kailun1, YANG Yuanwei1,2, GAO Xianjun1,2,3, TAN Meilin4, ZHANG Yue1   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Open Fund of Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China;
    3. Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China;
    4. Region Surveying and Mapping Geographic Information Center, Hohhot 010050, China
  • Received:2023-02-15 Online:2023-11-25 Published:2023-12-07

摘要: 电气化铁道接触网的非接触式检测研究对保障铁道的安全运营具有重要意义,检测工作需要大量的精确接触网点云数据支持,目前存在接触网部件间不易分割导致难以提供精确接触网点云数据支持的问题。针对该问题,本文提出了多级索引及移动向量联合的接触网提取方法。首先利用多级索引框简化铁道场景数据;然后通过轨迹线构建提取通道获取支柱底部中心点集,以计算沿轨移动向量;最后进行二级索引框的姿态调整,实现接触网的准确提取。本文设计了参数分析与对比试验,在10 km铁道场景中进行试验分析。结果表明,本文算法对接触网提取的查准率、查全率、F1均在约99%,均优于参照算法,表明本文算法能够适应复杂场景。

关键词: 接触网提取, 多级索引, 三维激光点云, 点云邻域搜索, 移动向量

Abstract: The research on non-contact detection of catenary of electrified railway is of great significance to ensure the safe operation of the railway. The detection work requires a large number of accurate contact point cloud data support. At present, there is a problem that it is difficult to provide accurate contact point cloud data support due to the difficulty of segmentation between catenary components. Aiming at this problem, this paper proposes a catenary extraction method based on the combination of multi-level index and moving vector. Firstly, the railway scene data is simplified by multi-level index frame.Then the center point set at the bottom of the pillar is obtained by constructing the extraction channel through the trajectory line to calculate the moving vector along the rail. Finally, the attitude of the secondary index frame is adjusted to achieve the accurate extraction of the catenary. In this paper, parameter analysis and comparison experiments are designed, and experimental analysis is carried out in the 10 km railway scene. The results show that the precision, recall and F1 of the algorithm in this paper are about 99%, which are better than the reference algorithm, so the algorithm in this paper can adapt to complex scenes.

Key words: catenary extraction, multi-level index, 3D LiDAR, point cloud neighborhood search, movement vector

中图分类号: