测绘通报 ›› 2023, Vol. 0 ›› Issue (2): 65-71.doi: 10.13474/j.cnki.11-2246.2023.0042

• 学术研究 • 上一篇    下一篇

融合空间信息和高光谱影像的四旁树自动提取方法

于浩洋1,2, 董春1,2, 张辉3   

  1. 1. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000;
    2. 中国测绘科学研究院, 北京 100830;
    3. 青海省自然资源综合调查监测院, 青海 西宁 810000
  • 收稿日期:2022-03-04 修回日期:2022-11-23 发布日期:2023-03-01
  • 通讯作者: 董春。E-mail:dongchun@casm.ac.cn
  • 作者简介:于浩洋(1998-),男,硕士生,主要研究方向为遥感影像分类及应用。E-mail:1148953734@qq.com
  • 基金资助:
    国家自然科学基金面上项目(71773117);国家社会科学基金重大项目(18ZDA066);国家社会科学基金一般项目(19BTJ019);中国测绘科学研究院中央公益院所基本业务费(AR2122)

Automatic extraction of four-side trees based on fusion of spatial information and hyperspectral image

YU Haoyang1,2, DONG Chun1,2, ZHANG Hui3   

  1. 1. College of Mapping and Geography Science, Liaoning Technical University, Fuxin 123000, China;
    2. China Chinese Academy of Surveying and Mapping, Beijing 100830, China;
    3. Qinghai Natural Resources Comprehensive Investigation and Monitoring Institute, Xining 810000, China
  • Received:2022-03-04 Revised:2022-11-23 Published:2023-03-01

摘要: 四旁树是森林覆盖率计算的重要组成部分,但因其零星分布,目前的统计方式仍为统计时间长、计算成本大的实地调研方法,缺少使用遥感影像和自动提取的研究。因此本文将多波段的哨兵2号遥感影像作为数据源进行筛选、组合和分类,并结合四旁树定义和空间分析方法,实现对四旁树的自动提取。试验结果表明,运用径向基核函数的支持向量机方法对9、6、4波段组合的遥感影像分类结果的总体精度为93.673 5%,Kappa系数为0.918 1,四旁树提取精度为90%,试验精度最高。相对于实地调查方法,该提取方法精度高且速度更快,更适用于大范围的四旁树信息提取与变化检测。

关键词: 四旁树, 影像分类, 空间分析, 自动提取, 支持向量机

Abstract: Four-side trees are an important part of forest coverage calculation. However, due to its sporadic distribution, the current statistical method is still a field research method with long statistical time and high calculation cost, and there is a lack of research on the use of remote sensing images and automatic extraction. Therefore, this paper takes the multi band Sentinel-2 remote sensing image as the data source for screening, combination and classification. It combines the definition of four-side tree and spatial analysis method to realize the automatic extraction of four-side tree. The experimental results show that the overall accuracy of the classification results of remote sensing images combined with 9, 6, 4 bands by using the support vector machine method of radial basis kernel function is 93.673 5%, the Kappa coefficient is 0.918 1, and the extraction accuracy of four side tree is 90%. The experimental accuracy is the highest. Compared with the field investigation method, this extraction method has high precision and faster speed, and is more suitable for a wide range of four-side tree information extraction and change detection.

Key words: four-side trees, image classification, spatial analysis, automatic extraction, support vector machines

中图分类号: