测绘通报 ›› 2023, Vol. 0 ›› Issue (3): 144-149.doi: 10.13474/j.cnki.11-2246.2023.0088

• 技术交流 • 上一篇    下一篇

宜出行大数据支持的武汉市主城区职住特征研究

王庆国1, 赵海2, 万婕1   

  1. 1. 武汉科技大学汽车与交通工程学院, 湖北 武汉 430065;
    2. 长江设计集团有限公司, 湖北 武汉 430010
  • 收稿日期:2022-06-14 发布日期:2023-04-04
  • 作者简介:王庆国(1974-),男,博士,教授,研究方向为大数据分析应用与智能位置信息服务。E-mail:qgwang_123@163.com
  • 基金资助:
    国家自然科学基金(41571396)

Research on the job-housing characteristics in Central Wuhan based on easygo big data

WANG Qingguo1, ZHAO Hai2, WAN Jie1   

  1. 1. School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China;
    2. Changjiang Institute of Survey, Planning, Design and Research Corporation, Wuhan 430010, China
  • Received:2022-06-14 Published:2023-04-04

摘要: 分析城市的职住特征能够为制定城市发展规划和解决城市交通问题提供重要的指导。本文以武汉市主城区为研究对象,依托宜出行大数据,通过对组团、街道和微观3个尺度的职住分布特征和职住平衡特征的分析,研究了武汉市主城区的职住特征。研究发现:①在组团尺度,各时段组团间的人口分布由中心向外围依次递减,与武汉市主城区圈层发展、组团布局的空间格局规律一致,各组团均处于职住平衡状态;②在街道尺度,主城区65.58%的街道为职住相对平衡状态,少数街道存在职住失衡现象;③在微观尺度,结合地图与POI数据分析,工作时段人口集中于商业区与交通线路附近,休息时段人口相对均匀地分散于住宅区。以工作时段人口聚集热点为例,热点中心就业高度集中,存在就业导向的职住失衡,随着距离增加,职住分布趋于平衡。

关键词: 职住平衡, 职住分布, 宜出行大数据, 核密度分析, 人口聚集

Abstract: The analysis of job-housing characteristics can provide important guidance for the formulation of urban development planning and solving urban traffic problems. Based on the big data of easygo, this paper takes the analysis of the characteristics of job-housing distribution and the characteristics of job-housing balance of the main urban area of Wuhan from three scales:urban cluster scale, street scale, and micro scale. The study found that:① At the cluster scale, the population distribution among clusters at each time period decreases sequentially from the center to the periphery, which is consistent with the spatial pattern of the circle development and cluster layout in the main urban area of Wuhan, and each cluster is in a state of job-housing balance. ②At the street scale, 65.58% of the streets in the main urban area are relatively balanced between jobs and housing, and a few streets have the phenomenon of job-housing imbalance. ③ At the micro-scale, combined with map and POI data analysis, the population during working hours is concentrated in the vicinity of commercial districts and traffic lines, and during rest hours, the population is relatively evenly dispersed in residential areas. Taking the hot spot of population gathering during working hours as an example, the employment of the hot spot is highly concentrated, and there is an employment-oriented job-housing imbalance. As the distance increases, the job-housing distribution tends to be balanced.

Key words: job-housing balance, job-housing distribution, easygo big data, kernel density analysis, population aggregation

中图分类号: