测绘通报 ›› 2023, Vol. 0 ›› Issue (4): 172-176.doi: 10.13474/j.cnki.11-2246.2023.0125

• 技术交流 • 上一篇    下一篇

DTW算法支持下的线状要素连续地图综合方法

康二梅1, 毛凯楠2   

  1. 1. 甘肃省基础地理信息中心, 甘肃 兰州 730000;
    2. 武汉大学资源与环境科学学院, 湖北 武汉 430072
  • 收稿日期:2022-09-22 发布日期:2023-04-25
  • 作者简介:康二梅(1981—),女,硕士,高级工程师,主要从事地图设计与编制、制图工艺优化等工作。E-mail:11795832@qq.com

Continuous cartographic generalization method supported by DTW algorithm for the continuous scale transformation of linear map features

KANG Ermei1, MAO Kainan2   

  1. 1. Basic Geographic Information Center of Gansu Province, Lanzhou 730000, China;
    2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China
  • Received:2022-09-22 Published:2023-04-25

摘要: 面向线状地图要素连续尺度变换问题,本文提出了一种DTW算法支持下的连续综合方法。该方法基于尺度融合的思想,将同一地理实体在大小两种比例尺下以不同的几何表达作为输入,首先基于DTW算法建立两种几何表达坐标顶点之间的对应关系;然后采用线性内插方法动态派生任意中间尺度上几何数据,从而实现连续地图综合。顶点之间对应关系的正确性,直接决定了线性内插的结果,而同一实体在不同比例尺下的几何表达往往具有不同的坐标点数,顶点之间具有一对多的对应关系。为寻求最优顶点匹配方案,以顶点距离作为匹配代价,以整体最小距离作为目标函数,采用DTW算法求解最优匹配。试验结果表明,基于DTW的顶点匹配方法可适应不同的地图综合场景,该方法支持下的地图综合效果可实现连续、光滑的渐变,符合地图表达规则和人类空间认知。

关键词: 动态时间规整, 地图综合, 尺度变换, 连续综合

Abstract: This paper propose a continuous generalization method supported by DTW algorithm for the continuous scale transformation of linear map features. Based on the idea of scale fusion, this method takes two different geometric representations of the same geographical entity at large and small scales as input. Firstly, the corresponding relationship between the coordinate vertices of the two geometric representations is established based on the DTW algorithm, and then the geometric data at any mesoscale is dynamically derived using the linear interpolation method to achieve continuous cartographic generalization. The correctness of the correspondence between vertices directly determines the quality of the linear interpolation results. The geometric representation of the same entity at different scales often has different coordinate points, and the correspondence between vertices is one to many. In order to find the optimal vertex matching, the DTW algorithm is used to solve the optimal matching with the vertex distance as the matching cost and the overall minimum distance as the objective function. Experiment results show that the vertex matching method based on DTW can adapt to different map generalization scenes, and the cartographic generalization effect supported by this method can achieve continuous, smooth and gradual changes, which conforms to the cartographic representation rules and human spatial cognition.

Key words: dynamic time warping, cartographic generalization, scale transformation, continuous generalization

中图分类号: