测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 125-129.doi: 10.13474/j.cnki.11-2246.2023.0148

• 技术交流 • 上一篇    下一篇

利用倾斜影像重建点云的建筑物变化检测

黄桦, 葛为燎, 刘微微, 钱荣荣, 李杰   

  1. 浙江省测绘科学技术研究院, 浙江 杭州 311100
  • 收稿日期:2022-06-28 修回日期:2023-03-28 发布日期:2023-05-31
  • 作者简介:黄桦(1982-),男,硕士,研究方向为激光点云分类、三维GIS开发应用。E-mail:61293447@qq.com
  • 基金资助:
    浙江省自然资源厅2022年度科技项目(2022-53);浙江省自然科学基金(LTGS23D010003)

Building change detection using tilted image reconstruction point cloud

HUANG Hua, GE Weiliao, LIU Weiwei, QIAN Rongrong, LI Jie   

  1. Zhejiang Academy of Surveying & Mapping, Hangzhou 311100, China
  • Received:2022-06-28 Revised:2023-03-28 Published:2023-05-31

摘要: 城镇空间建筑物的变化检测是分析城市空间格局变化的一项重要内容。针对利用卫星影像检测建筑物变化过程中噪声、复杂边界等干扰难题,本文从不同期倾斜影像重建点云中自动提取建筑物平面和高度两个维度的准确变化信息。首先采用布料模拟滤波算法较大程度上减少地形点的影响;然后利用一种动态图神经网络深度学习方法,有效地检测出点云中的建筑物,通过前后两期点云分类后结果对比提取出建筑物的三维变化信息;最后选取杭州市萧山区局部区域的两期倾斜摄影测量密集匹配点云数据开展分析验证。结果表明,本文方法能够在大范围内快速实现可靠的建筑物变化检测,建筑物平面和高程两个维度的变化信息均有很好的反映,为城市精细化管理提供了一种有效方法。

关键词: 点云分类, 建筑物变化检测, 布料模拟滤波算法, 动态图神经网络, 三维变化

Abstract: Detecting building changes is an important task to analyze the change of urban spatial layout. To address the problem of noise or complicated boundary in the process of change detection using satellite images,this paper researches on the automatic extraction of change information of buildings for plane and height from the point cloud reconstructed by photogrammetry techniques. Firstly, the cloth simulation filtering algorithm is proposed to reduce the influence of terrain, and then a deep learning technology of dynamic graph neural network is used to effectively extract the building points. The change regions of buildings are extracted through the comparison of two point cloud classification results. This paper selects the dense matching point clouds of two phases of tilt photogrammetry in some areas of Xiaoshan District, Hangzhou for experimental analysis and verification.The results demonstrate that the proposed method can quickly realize reliable building change detection in a wide range, the change information of plane and elevation dimensions of buildings is well reflected,and can provide support for fine urban management.

Key words: point cloud classification, building changing detection, cloth simulation filtering algorithm, dynamic graph neural network, 3D changes

中图分类号: