测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 61-69.doi: 10.13474/j.cnki.11-2246.2024.1210

• 学术研究 • 上一篇    下一篇

基于深度学习的黄土陷穴易发育区域预测与分析

黄骁力1,2,3,4, 江岭1,2,3,4, 陈西1,2,3,4, 位宏1,2,3,4, 闫振军1,2,3,4   

  1. 1. 实景地理环境安徽省重点实验室, 安徽 滁州 239000;
    2. 安徽省遥感与地理信息工程研究中心, 安徽 滁州 239000;
    3. 安徽地理信息集成应用协同创新中心, 安徽 滁州 239000;
    4. 滁州学院地理信息与旅游学院, 安徽 滁州 239000
  • 收稿日期:2024-04-01 发布日期:2024-12-27
  • 通讯作者: 江岭,E-mail:ling.jiang@chzu.edu.cn E-mail:ling.jiang@chzu.edu.cn
  • 作者简介:黄骁力(1990-),男,博士,副教授,主要从事DEM数字地形分析与地貌演化相关研究工作。E-mail:xiaoliray@163.com
  • 基金资助:
    国家自然科学基金(42101425);安徽省高校科学自然科学研究重大项目(2023AH040219);安徽省优秀科研创新团队项目(2023AH010071);安徽省高校优秀青年科研项目(2022AH030112)

Loess sinkholes development regional prediction and analysis based on deep learning

HUANG Xiaoli1,2,3,4, JIANG Ling1,2,3,4, CHEN Xi1,2,3,4, WEI Hong1,2,3,4, YAN Zhenjun1,2,3,4   

  1. 1. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239000, China;
    2. Anhui Engineering Research Center of Remote Sensing and Geographic Information, Chuzhou 239000, China;
    3. Anhui Center for Collaborative Innovation in Geographical Information Integration and Application, Chuzhou 239000, China;
    4. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
  • Received:2024-04-01 Published:2024-12-27

摘要: 黄土陷穴是黄土高原地区普遍存在的一种特殊的地质灾害,其防治工作是黄土地区工程建设必须要考虑的问题。本文基于修正通用土壤流失模型(RUSLE),从DEM、降水量、地表覆盖、植被指数等多源数据中提取12种不同类型的特征因子,构建卷积神经网络(CNN)和深度神经网络(DNN)两种预测模型,实现对黄土陷穴易发育区域的预测,并对两种模型的预测结果进行对比与分析,从而为黄土地区的陷穴灾害防治、工程建设及水土保持提供参考依据。研究结果表明,CNN、DNN两种预测模型准确率均达80%以上,F1分数均达83%以上,均能有效地预测黄土陷穴的易发育区域。其中,CNN模型准确率达83.25%,F1分数达85.18%,分别比DNN模型高2.63%、1.56%,且该模型泛化能力表现更好,预测结果在细节上也表现更为出色。预测结果表明,黄土陷穴在沟谷区域发育较强,平坦地形发育较弱,人类活动对其发育具有一定影响。

关键词: 黄土陷穴, 区域预测, 多源数据, 卷积神经网络, 深度神经网络

Abstract: Loess sinkholes are a unique type of geological hazard that is widespread across the Loess Plateau. Their prevention and control are essential considerations in construction projects within this region. Based on a modified RUSLE, this study extracts 12 different types of feature factors from multiple data sources, including DEM, precipitation, surface cover, and vegetation index. Two prediction models, CNN and DNN are constructed to predict areas prone to loess sinkhole development. The results of the two models are compared and analyzed to provide reference for the prevention and control of sinkhole hazards, construction projects, and soil and water conservation in loess areas. The findings show that both the CNN and DNN models achieve an accuracy rate of over 80% and an F1 score of over 83%, indicating their effectiveness in predicting areas prone to loess sinkholes. The CNN model achieves an accuracy of 83.25% and an F1 score of 85.18%, which are 2.63% and 1.56% higher than those of the DNN model, respectively. This demonstrates the superior generalization ability and detailed performance of the CNN model. Analysis of the prediction results indicates that loess sinkholes develop more strongly in valley areas, less so on flat terrain, and are influenced to some extent by human activities.

Key words: loess sinkhole, regional prediction, multi-source data, CNN, DNN

中图分类号: