[1] ZHANG Junping,WANG Feiyue,WANG Kunfeng,et al. Data-driven intelligent transportation systems:a survey[J]. IEEE Transactions on Intelligent Transportation Systems,2011,12(4):1624-1639. [2] WANG Guolin,XIAO Deyun,GU J. Review on vehicle detection based on video for traffic surveillance[C]//Proceedings of 2008 IEEE International Conference on Automation and Logistics. Qingdao:IEEE,2008:2961-2966. [3] HU L L,ZHANG Z W,ZHOU M Z,et al. Crushing behaviors and failure of packed batteries[J]. International Journal of Impact Engineering,2020,143:103618. [4] SONG Huansheng,LIANG Haoxiang,LI Huaiyu,et al. Vision-based vehicle detection and counting system using deep learning in highway scenes[J]. European Transport Research Review,2019,11(1):51. [5] CHEN Leiyu,LI Shaobo,BAI Qiang,et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote Sensing,2021,13(22):4712. [6] WU Jianping,LIU Zhaobin,LI Jinxiang,et al. An algorithm for automatic vehicle speed detection using video camera[C]//Proceedings of 2009 International Conference on Computer Science & Education.Nanning:IEEE,2009:193-196. [7] ADNAN M A,SULAIMAN N,ZAINUDDIN N I,et al. Vehicle speed measurement technique using various speed detection instrumentation[C]//Proceedings of 2013 IEEE Business Engineering and Industrial Applications Colloquium. Langkawi:IEEE,2013:668-672. [8] 靳慧云,李苑,谢贤能,等. 监控视频中目标车辆速度被动式测量方法研究[J]. 测绘通报,2012(8):47-50. [9] 梁建术,贾汇沦,张琳琳. 基于监控视频图像车辆测速的研究[J]. 农业装备与车辆工程,2022,60(6):87-89. [10] SANG Jun,WU Zhongyuan,GUO Pei,et al. An improved YOLOv2 for vehicle detection[J]. Sensors,2018,18(12):4272. [11] LIN Chengjian,JENG S Y,LIOA H W. A real-time vehicle counting,speed estimation,and classification system based on virtual detection zone and YOLO[J]. Mathematical Problems in Engineering,2021,2021:1577614. [12] 赵丽丽,唐阳山. 基于固定式视频的车速鉴定方法研究[J]. 山东交通科技,2022(2):111-113. [13] YILMAZ H M,YAKAR M,GULEC S A,et al. Importance of digital close-range photogrammetry in documentation of cultural heritage[J]. Journal of Cultural Heritage,2007,8(4):428-433. [14] JIANG Ruinian,JÁUREGUI D V,WHITE K R.Close-range photogrammetry applications in bridge measurement:literature review[J]. Measurement,2008,41(8):823-834. [15] LUHMANN T. Close range photogrammetry for industrial applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(6):558-569. [16] MOKROý M,LIANG Xinlian,SUROVŠ P,et al. Evaluation of close-range photogrammetry image collection methods for estimating tree diameters[J]. ISPRS International Journal of Geo-Information,2018,7(3):93. [17] DU Xinguang,JIN Xianlong,ZHANG Xiaoyun,et al. Geometry features measurement of traffic accident for reconstruction based on close-range photogrammetry[J]. Advances in Engineering Software,2009,40(7):497-505. [18] HAMZAH N B,SETAN H,MAJID Z. Reconstruction of traffic accident scene using close-range photogrammetrytechnique[J].Environmental Science,2010:129589944. [19] EPSTEIN B,WESTLAKE B G. Determination of vehicle speed from recorded video using reverse projection photogrammetry and file metadata[J]. Journal of Forensic Sciences,2019,64(5):1523-1529. [20] ABDEL-AZIZ Y I,KARARA H M,HAUCK M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing,2015,81(2):103-107. [21] EL-DIN FAWZY H. Study the accuracy of digital close range photogrammetry technique software as a measuring tool[J]. Alexandria Engineering Journal,2019,58(1):171-179. [22] ROOM M M,AHMAD A. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system[J]. IOP Conference Series:Earth and Environmental Science,2014,18:012061. [23] ZAKRIA Z,DENG Jianhua,KUMAR R,et al. Multiscale and direction target detecting in remote sensing images via modified YOLO-v4[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:1039-1048. [24] NEPAL U,ESLAMIAT H. Comparing YOLOv3,YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs[J]. Sensors,2022,22(2):464. [25] BOCHKOVSKIY A,WANG C Y,LIAO H. YOLOv4:optimal speed and accuracy of object detection[J].Computer Science,2020:216080778. [26] KIM J A,SUNG J Y,PARK S H. Comparison of faster-RCNN,YOLO,and SSD for real-time vehicle type recognition[C]//Proceedings of 2020 IEEE International Conference on Consumer Electronics-Asia. Seoul:IEEE,2020:1-4. [27] KUMAR B C,PUNITHA R,MOHANA. YOLOv3 and YOLOv4:multiple object detection for surveillance applications[C]//Proceedings of 2020 Third International Conference on Smart Systems and Inventive Technology. Tirunelveli:IEEE,2020:1316-1321. [28] CAI Yingfeng,LUAN Tianyu,GAO Hongbo,et al. YOLOv4-5D:an effective and efficient object detector for autonomous driving[J]. IEEE Transactions on Instrumentation Measurement,2021,70:3065438. [29] DU Shuangjiang,ZHANG Pin,ZHANG Baofu,et al. Weak and occluded vehicle detection in complex infrared environment based on improved YOLOv4[J]. IEEE Access,2021,9:25671-25680. [30] NI Zhenhao,LIU Tingna,LI Ke,et al. Real-time vehicle detection and computer intelligent recognition through improved YOLOv4[J]. Journal of Physics:Conference Series,2021,2083(4):042006. [31] WANG C Y,MARK LIAO H Y,WU Y H,et al. CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle:IEEE,2020:390-391. [32] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [33] LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[M]//Computer Vision-ECCV 2014. Cham:Springer International Publishing,2014:740-755. |