测绘通报 ›› 2024, Vol. 0 ›› Issue (4): 90-95.doi: 10.13474/j.cnki.11-2246.2024.0415

• 基础测绘赋能城市建设 • 上一篇    

基于地铁隧道高分辨率图像的裂缝信息提取

魏向辉1, 孙亮1, 赵烁阳2   

  1. 1. 石家庄铁路职业技术学院, 河北 石家庄 050041;
    2. 石家庄铁道大学, 河北 石家庄 050043
  • 收稿日期:2023-12-06 发布日期:2024-04-29
  • 通讯作者: 孙亮。E-mail:527139951@qq.com
  • 作者简介:魏向辉(1986—),男,硕士,讲师,主要研究方向为测绘工程领域工程。E-mail:511403458@qq.com

Crack information extraction based on high-resolution images of metro tunnels

WEI Xianghui1, SUN Liang1, ZHAO Shuoyang2   

  1. 1. Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041, China;
    2. Shijiazhuang Tiedao University, Shijiazhuang 050043, China
  • Received:2023-12-06 Published:2024-04-29

摘要: 随着运营年限的增长,地铁隧道会逐渐产生各类病害,裂缝是一种典型的病害现象。由于大部分裂缝的特征不突出,且受到地铁隧道内部电缆设备、划痕、蜘蛛网等线状干扰物的影响,现有裂缝检测方法在高分辨率图像下效果不佳。本文以衬砌裂缝为研究对象,基于自主研发的隧道相机系统,实现对隧道表面信息的无损数据采集,获取4096×2168像素的高分辨率图像数据;明确裂缝识别的干扰因素,基于病害特性构建干扰数据集及真实纹理数据集;以掩码-区域卷积神经网络(Mask R-CNN)模型为基准框架,采用K-means和遗传算法对区域建议网络(RPN)网络进行参数优化;利用对比试验和消融试验说明本文算法的检测效果和表现性能。结果表明,本文算法能实现高分辨率图像下隧道裂缝的识别和长度测量,漏检和误检概率更低,对细长、特征不太明显的裂缝具有较好的检测性能,裂缝测量值可为地铁的运营维护提供参考。

关键词: Mask R-CNN, 高分辨率图像, 尺寸聚类, 裂缝, 长度测量

Abstract: Due to the fact that most of the cracks do not have distinctive features and are affected by cable,scratches,cobwebs and other linear interferences inside the tunnels,the detection effect of the existing crack detection methods,using high-resolution images,still needs to be improved. This paper takes the lining cracks as the research object,realizes the non-destructive data acquisition of the tunnel surface information based on the tunnel camera system,and acquires the high-resolution image data of 4096×2168 pixels. And we clarify the interference factors of crack identification,and constructs the interference data set and the real texture data set based on the characteristics of the disease; takes the Mask R-CNN model as the baseline framework,and adopts the K-means and genetic algorithm to optimize the parameters of RPN network. The detection effect and performance of this paper's algorithm are illustrated using comparative and ablation experiments. The results show that the algorithm proposed in this paper can realize the recognition and length measurement of tunnel cracks under high-resolution images,with lower probability of leakage and false detection,and has better detection performance for the slender and less obvious cracks,and the measured values of the cracks can provide reference information for the operation and maintenance of the subway.

Key words: Mask R-CNN, high-resolution images, size clustering, crack, length measurement

中图分类号: