[1] 缪希仁,刘志颖,鄢齐晨. 无人机输电线路智能巡检技术综述[J]. 福州大学学报(自然科学版),2020,48(2): 198-209. [2] 麻卫峰. 机载激光点云输电线路巡检关键技术研究[J]. 测绘学报,2023,52(9): 1612. [3] 张智前,叶周润,欧鑫,等.基于机载LiDAR系统的电力线点云提取方法研究[J].合肥工业大学学报(自然科学版),2023,46(8):1103-1108. [4] 束庆霏,张纳川,蔡佳澄,等.基于多分段线性拟合的输电导线快速提取方法[J].电力与能源,2023,44(2):110-114. [5] 刘玉贤,阮明浩,闫臻. 一种基于机载激光点云的门型电塔精确提取方法[J]. 测绘通报,2022(7): 129-133. [6] CHEN Y,LIN J,LIAO X. Early detection of tree encroachment in high voltage powerline corridor using growth model and UAV-borne LiDAR[J]. International Journal of Applied Earth Observation and Geoinformation,2022,108:102740. [7] 梁磊,习晓环,王成,等. 基于B/S架构的激光雷达电力巡线可视化管理与分析系统[J]. 中国科学院大学学报,2022,39(2): 201-207. [8] ENGEL N,BELAGIANNIS V,DIETMAYER K. Point transformer[J]. IEEE Access,2021,9: 134826-134840. [9] WANG Y,SUN Y,LIU Z,et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics,2019,146: 1-12. [10] CHARLES R Q,SU H,MO K,et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE,2017. [11] UNAL O,DAI D,VAN GOOL L. Scribble-supervised LiDAR semantic segmentation[C]//Proceedings of 2022 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Orleans,USA:IEEE,2022. [12] QI C R,YI L,SU H,et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.[S.l.]:NIPS,2017. [13] 孟昊.基于机载LiDAR的输电线路分类算法研究[D].淄博:山东理工大学,2023. [14] 黄郑,顾徐,王红星,等.基于改进PointNet++的输电杆塔点云语义分割模型[J].中国电力,2023,56(3):77-85. [15] NARDINOCCHI C,BALSI M,ESPOSITO S. Fully automatic point cloud analysis for powerline corridor mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(12):8637-8648. [16] 杨长青,李果,宋颖,等. 攀西地区架空输电线路线下主要树种自然生长高度研究[J]. 林业勘查设计,2023,52(1): 79-84. [17] 田乐萌,冉海涛,付斌,等.D2000S无人机系统在输电线路新建工程中的应用[J].测绘通报,2023(S1):141-147. [18] 国家能源局. 架空输电线路运行规程: DL/T 741—2019[S]. 北京: 中国电力出版社,2019. |