测绘通报 ›› 2024, Vol. 0 ›› Issue (6): 19-23.doi: 10.13474/j.cnki.11-2246.2024.0604

• 生态影响因子分析 • 上一篇    下一篇

针对浒苔目标检测的全局背景强化的位置蒸馏方法

刘兵1,2, 刘宇2, 金凤学2, 邹一波1,3, 葛艳3, 赵林林3   

  1. 1. 自然资源部生态预警与保护修复重点实验室, 山东 青岛 266033;
    2. 三峡新能源盐城大丰有限公司, 江苏 盐城 224199;
    3. 上海海洋大学信息学院, 上海 201308
  • 收稿日期:2023-10-05 发布日期:2024-06-27
  • 作者简介:刘兵(1979—),男,硕士,高级工程师,研究方向为图像处理。E-mail:liu_bing@ctg.com.cn
  • 基金资助:
    自然资源部生态预警与保护修复重点实验室开放基金(2022105)

Distillation method based on global background strengthen for Enteromorpha prolifera target detection

LIU Bing1,2, LIU Yu2, JIN Fengxue2, ZOU Yibo1,3, GE Yan3, ZHAO Linlin3   

  1. 1. Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, Qingdao 266033, China;
    2. Three Gorges New Energy Yancheng Dafeng Co., Ltd., Yancheng 224199, China;
    3. The School of Information, Shanghai Ocean University, Shanghai 201308, China
  • Received:2023-10-05 Published:2024-06-27

摘要: 浒苔检测是目前海洋环境智能监测领域研究的重要课题之一。为了有效解决传统浒苔检测方法存在的训练样本需求大的问题,本文提出了一种全局背景强化的位置蒸馏模型(GBS-LD)。通过引入全局上下文模块和背景蒸馏损失分支,解决了原始位置蒸馏方法在建模背景特征上的不足,在复杂海洋环境下有效提高了浒苔检测系统的稳健性。在浒苔检测数据集中,本文模型具有较高的准确性和实时性,为海洋智能监测提供了重要参考。

关键词: 浒苔, 位置蒸馏, 全局背景强化, 目标检测, 深度学习

Abstract: The detection of Enteromorpha prolifera stands as a pivotal research area within the realm of intelligent marine environment monitoring.Addressing the challenge posed by the substantial training sample requirements inherent in conventional methods of Enteromorpha prolifera detection,this paper proposes GBS-LD model.By introducing a global context module and background distillation loss branch,the shortcomings of the original position distillation method in modeling background features are solved,effectively improving the robustness of detection system in complex marine environments.Our proposed model has achieved high accuracy and real-time performance in the dataset of Enteromorpha prolifera,providing important reference for intelligent monitoring of marine.

Key words: Enteromorpha prolifera, localization distillation, global background strengthing, object detection, deep leaning

中图分类号: