测绘通报 ›› 2024, Vol. 0 ›› Issue (6): 53-58,170.doi: 10.13474/j.cnki.11-2246.2024.0610

• 学术研究 • 上一篇    

结合卷积神经网络和注意力机制的LSTM采空区地表沉降预测方法

高墨通1,2,3, 杨维芳1,2,3, 刘祖昱4, 曹小双1,2,3, 张瑞琪1,2,3, 侯宇豪1,2,3   

  1. 1. 兰州交通大学测绘与地理信息学院, 甘肃 兰州 730070;
    2. 地理国情监测技术应用国家地方联合工程研究中心, 甘肃 兰州 730070;
    3. 甘肃省地理国情监测工程实验室, 甘肃 兰州 730070;
    4. 金川集团股份有限公司龙首矿, 甘肃 金昌 737100
  • 收稿日期:2023-11-24 发布日期:2024-06-27
  • 通讯作者: 杨维芳。E-mail:99903217@qq.com
  • 作者简介:高墨通(1999—),男,硕士生,主要研究方向为基于深度学习的地表沉降预测模型。E-mail:1505755071@qq.com
  • 基金资助:
    国家自然科学基金(42061076);兰州交通大学优秀平台(201806)

LSTM goaf surface subsidence prediction method combining convolutional neural network and attention mechanism

GAO Motong1,2,3, YANG Weifang1,2,3, LIU Zuyu4, CAO Xiaoshuang1,2,3, ZHANG Ruiqi1,2,3, HOU Yuhao1,2,3   

  1. 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Nation-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China;
    3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China;
    4. Longshou Mine of Jinchuan Group Co., Ltd., Jinchang 737100, China
  • Received:2023-11-24 Published:2024-06-27

摘要: 为解决采空区地表塌陷区域时序预测中存在的监测点空间特征难以提取的问题,本文提出了一种可以提取监测点关键空间特征的CNN-Attention-LSTM组合神经网络模型。首先,增加作为特征输入的邻近监测点个数,使用卷积神经网络(CNN)提取由多个监测点构成的多维时间序列的空间特征;其次,将提取后的多维特征时序输入多层感知器(MLP)中计算注意力权重,并与特征输入作Hadamard积,实现特征输入的注意力权重分配;然后,利用长短期记忆神经网络(LSTM)进行回归预测;最后,通过全连接层,整合输出目标监测点的预测值。本文以龙首矿西二采区地表塌陷区域为例,给出其地表沉降监测数据预测结果,并与实际采集的数据作对比。结果表明,引入注意力机制的CNN-Attention-LSTM的组合模型比CNN-LSTM模型和LSTM模型精度更高,且增加有效特征输入能够显著提升CNN-Attention-LSTM模型的预测精度。

关键词: 时间序列建模, 地表沉降预测, 深度学习, 注意力机制, 长短期记忆

Abstract: In order to solve the problem of difficult extraction of spatial features of monitoring points in the time series prediction of surface collapse areas in the mining zone, a CNN-Attention-LSTM combined neural network model that can extract key spatial features of monitoring points is proposed. Firstly, the number of neighbouring monitoring points as feature input is increased, and the spatial features of the multidimensional time series composed of multiple monitoring points are extracted using convolutional neural network (CNN). Secondly, the extracted multidimensional feature time series are input into the multilayer perceptron (MLP) to calculate the attention weights and make Hadamard product with the feature inputs to achieve the allocation of the attention weights of the feature inputs. After that regression prediction is performed using long short term memory neural network (LSTM). Finally, through the fully connected layer, the predicted values of the target monitoring points are integrated and output. In this paper, we take the surface collapse area in the west second mining area of Longshou mine as an example to give the prediction results of its surface subsidence monitoring data and compare them with the actual collected data. The results show that the combined CNN-Attention-LSTM model with the introduction of the attention mechanism is more accurate than the CNN-LSTM model and the LSTM model respectively, and the addition of effective feature inputs can significantly improve the prediction accuracy of the CNN-Attention-LSTM model.

Key words: time series modeling, surface subsidence prediction, deep learning, attention mechanism, long and short-term memory

中图分类号: