测绘通报 ›› 2024, Vol. 0 ›› Issue (7): 88-94.doi: 10.13474/j.cnki.11-2246.2024.0716

• 学术研究 • 上一篇    下一篇

融合孤立森林和深度学习的GNSS-IR土壤湿度反演

杨晓峰, 魏浩翰, 张强, 向云飞   

  1. 南京林业大学土木工程学院, 江苏 南京 210037
  • 收稿日期:2023-11-24 发布日期:2024-08-02
  • 通讯作者: 魏浩翰。E-mail:weihaohan@njfu.edu.cn
  • 作者简介:杨晓峰(1999—),男,硕士生,主要从事GNSS反射信号遥感研究。E-mail:yangxiaofeng@njfu.edu.cn
  • 基金资助:
    江苏省农业科技自主创新基金(CX (21)3068);国家级大学生创新训练计划项目(202210298023Z);国家自然科学基金青年科学基金项目(42304016)

GNSS-IR soil moisture inversion integrating isolated forest and deep learning

YANG Xiaofeng, WEI Haohan, ZHANG Qiang, XIANG Yunfei   

  1. School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Received:2023-11-24 Published:2024-08-02

摘要: 针对GNSS反射信号遥感中单一特征参数数据质量参差不齐、可靠性差,模型反演结果不稳定的问题,本文提出了一种融合孤立森林和深度学习的GNSS-IR土壤湿度反演方法。试验结果表明,GNSS SNR的频率特征参数不适合土壤湿度的反演,而其振幅、相位特征参数与土壤湿度的相关性较高,可用于土壤湿度的反演;CNN、DBN和GRU 3种深度学习模型融合振幅和相位特征参数的反演结果与实测土壤湿度吻合度都较高;相比于仅利用振幅或相位的单一特征参数反演方法,本文方法反演精度提高了21.4%~55.8%,相关系数提高了4%~9.1%。

关键词: 土壤湿度, GNSS-IR, 深度学习, 孤立森林

Abstract: Aiming at the problems of uneven quality,poor reliability and unstable model inversion results of single characteristic parameter data in GNSS reflected signal remote sensing,this paper proposes a GNSS-IR soil moisture inversion method that combines isolated forest and deep learning. The experimental results show that the frequency characteristic parameters of GNSS SNR are not suitable for the inversion of soil moisture,while the amplitude and phase characteristic parameters are highly correlated with soil moisture,which can be used for the inversion of soil moisture. The inversion results of the fusion amplitude and phase characteristic parameters of the three deep learning models of CNN,DBN and GRU are in good agreement with the measured soil moisture. Compared with the single feature parameter inversion method using only amplitude or phase,the inversion accuracy of the proposed method is improved by 21.4%~55.8%,and the correlation coefficient is improved by 4%~9.1%.

Key words: soil moisture, GNSS-IR, deep learning, isolated forest

中图分类号: