测绘通报 ›› 2024, Vol. 0 ›› Issue (9): 96-100.doi: 10.13474/j.cnki.11-2246.2024.0917

• 学术研究 • 上一篇    下一篇

基于北斗/GNSS PWV数据构建的短临强降雨模型及其应用

邓南山1, 刘洋2, 李小伟1, 斯小华1, 雷磊1   

  1. 1. 中南冶金地质研究所, 湖北 宜昌 443000;
    2. 武汉大学测绘学院, 湖北 武汉 430079
  • 收稿日期:2024-01-05 发布日期:2024-10-09
  • 通讯作者: 李小伟。E-mail:250124817@qq.com
  • 作者简介:邓南山(1990—),男,硕士,工程师,主要从事GNSS技术与研究。E-mail:516806366@qq.com
  • 基金资助:
    宜昌市自然科学研究项目(A23-2-039);湖北省重点研发计划(2022BAA047);湖北省自然科学基金(2022CFB557)

Constructing a short term heavy rainfall model based on BeiDou/GNSS PWV data and its application

DENG Nanshan1, LIU Yang2, LI Xiaowei1, SI Xiaohua1, LEI Lei1   

  1. 1. Central South Institute of Metallurgical Geology, Yichang 443000, China;
    2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2024-01-05 Published:2024-10-09

摘要: 传统降雨预警模型仅局限于预警降雨事件是否发生,忽略了对短临强降雨事件的预警。基于降雨发生前大气可降水量(PWV)表现出明显增长的趋势,本文提出了基于北斗/GNSS PWV的短临强降雨预警模型。模型包含PWV值、PWV变化量和PWV变化率3种预测因子,并引入百分位法确定预测因子关键参数的最优阈值。选取湖北省宜昌市5个GNSS站点2022年逐小时PWV和降雨数据进行验证,统计结果显示,本文提出的短临强降雨预警模型可预测未来2~6 h内94%的大雨事件,误报率仅为32.84%。

关键词: 强降雨预警, 北斗/GNSS, PWV, 预警模型

Abstract: The traditional rainfall warning model is only limited to warning whether rainfall events have occurred, ignoring the warning of short-term and imminent heavy rainfall events. Based on the significant increase in precipitable water vapor (PWV) before rainfall occurs, this paper proposes a short-term and imminent heavy rainfall warning model based on BeiDou/GNSS PWV. The model includes three predictive factors: PWV value, PWV change amount and PWV change rate, and introduces the percentile method to determine the optimal threshold for key parameters of the predictive factors. Selecting five GNSS stations in Yichang city, Hubei province for hourly PWV and rainfall data validation in 2022, the statistical results show that the proposed short-term and imminent heavy rainfall warning model can predict 94% of heavy rain events in the next 2~6 hours, with a false alarm rate of only 32.84%.

Key words: heavy rainfall warning, BeiDou/GNSS, PWV, warning model

中图分类号: