测绘通报 ›› 2025, Vol. 0 ›› Issue (12): 77-81,120.doi: 10.13474/j.cnki.11-2246.2025.1213

• 工程测量分会年会优选论文 • 上一篇    

一种多阶段优化的CUBE-ICP点云配准算法

李枭凯, 李广云, 王力   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2025-07-04 发布日期:2025-12-31
  • 作者简介:李枭凯(1993—),男,博士生,主要从事多波束测深数据后处理、点云数据处理、室内导航等研究。E-mail:734166372@qq.com
  • 基金资助:
    国家自然科学基金(42071454;42371466)

A multi-stage optimized CUBE-ICP point cloud registration algorithm

LI Xiaokai, LI Guangyun, WANG Li   

  1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2025-07-04 Published:2025-12-31

摘要: 针对复杂环境下激光雷达点云配准收敛慢和精度低的问题,本文提出了一种多阶段优化的不确定度ICP算法(CUBE-ICP)。通过空间分布方差增强方法与不确定度正则化策略,显著提升了在复杂场景下点云配准的精度与稳健性。CUBE-ICP构建了一个概率驱动的三阶段优化框架。首先,基于激光雷达误差模型量化点云不确定性;然后,在三维空间单元内通过协方差矩阵捕捉点云分布特性;最后,融合空间分布方差增强与不确定度正则化约束,实现从概率建模到稳健优化的整体过程。试验结果表明,在点云双帧配准及连续帧配准任务中,CUBE-ICP的配准误差均显著低于ICP、3D-NDT、N-ICP、GICP及LOAM等主流算法。本文算法在激光雷达点云配准任务中具有较高的性能优势,有效解决了传统ICP算法在处理复杂场景时的局限性,展现了更强的环境适应能力和几何特征适配能力。

关键词: 点云配准, ICP算法, CUBE算法, 激光雷达, 多阶段优化

Abstract: In response to the problems of slow convergence and low accuracy in LiDAR point cloud registration in complex environments,this paper proposes a multi-stage optimization uncertainty ICP algorithm (CUBE-ICP).By using spatial distribution variance enhancement method and uncertainty regularization strategy,the accuracy and robustness of point cloud registration in complex scenes have been significantly improved.CUBE-ICP has developed a probability driven three-stage optimization framework: firstly,quantifying point cloud uncertainty based on a LiDAR error model.Secondly,capture the distribution characteristics of point clouds within the three-dimensional spatial unit through covariance matrices.Finally,the fusion of spatial distribution variance enhancement and uncertainty regularization constraints achieves a closed-loop approach from probabilistic modeling to robust optimization.The experimental results showed that the registration error of CUBE-ICP was significantly lower than mainstream algorithms such as ICP,3D-NDT,N-ICP,GICP,and LOAM in point cloud dual frame registration and continuous frame registration tasks.The CUBE-ICP algorithm proposed in this article has high performance advantages in the registration task of LiDAR point clouds,effectively solving the limitations of traditional ICP algorithms in processing complex scenes,and demonstrating stronger environmental adaptability and geometric feature adaptability.adaptability and geometric feature adaptability.

Key words: point cloud registration, ICP algorithm, CUBE algorithm, LiDAR, optimization in multiple stages

中图分类号: