测绘通报 ›› 2025, Vol. 0 ›› Issue (2): 7-12,47.doi: 10.13474/j.cnki.11-2246.2025.0202

• 实景三维建设与应用 • 上一篇    下一篇

面向密度明显差异点云的室内场景三维Mesh模型POCO重建方法

宋培焱1,2, 叶勤1,3, 曾亮3, 罗俊奇3, 张硕3, 尹长江3   

  1. 1. 自然资源部城市国土资源监测与仿真重点实验室, 广东 深圳 518034;
    2. 深圳市规划和自然资源调查测绘中心, 广东 深圳 518000;
    3. 同济大学测绘与地理信息学院, 上海 200092
  • 收稿日期:2024-06-04 发布日期:2025-03-03
  • 通讯作者: 曾亮。E-mail:zz16ang@163.com
  • 作者简介:宋培焱(1985—),男,硕士,高级工程师,主要从事实景三维重建技术工作。E-mail:403091732@qq.com
  • 基金资助:
    自然资源部城市国土资源监测与仿真重点实验室开放基金(KF-2023-08-014);国家自然科学基金(41771480)

Indoor scene 3D Mesh model reconstruction from point cloud with density variation using POCO

SONG Peiyan1,2, YE Qin1,3, ZENG Liang3, LUO Junqi3, ZHANG Shuo3, YIN Changjiang3   

  1. 1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China;
    2. Shenzhen Planning and Natural Resources Surveying and Mapping Center, Shenzhen 518000, China;
    3. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
  • Received:2024-06-04 Published:2025-03-03

摘要: 针对现有室内场景三维重建方法在处理大规模且密度显著差异的点云时重建效果不佳的问题,本文提出了一种基于POCO深度神经网络、改进训练、重建策略的室内场景三维Mesh模型重建方法。首先,改进训练策略,充分利用现有少量仿真场景与极少量真实场景数据对原模型进行微调训练;然后,改进重建策略,引入最远点采样和包围盒尺度一致的策略;最后,对重建的三维Mesh模型进行尺度复原。试验结果表明,本文方法在重建精度和模型完整度上均优于改进前的POCO原模型,可为实景三维中国建设提供有力支持。

关键词: POCO, 三维重建, 室内场景, 密度差异点云, 深度学习

Abstract: To address the suboptimal performance of existing point cloud-based indoor 3D reconstruction methods when handling large-scale point cloud with significant density variations, we propose an improved indoor scene 3D Mesh model reconstruction method based on the POCO deep neural network, featuring enhanced training and reconstruction strategies. Firstly, we improve the training strategy by fine-tuning the original model using a small amount of simulated scene data and a very limited amount of real scene data. Secondly, we enhance the reconstruction strategy by introducing farthest point sampling and a strategy to ensure consistent bounding box scales. Finally, we restore the scale of the reconstructed 3D Mesh model. Experimental results demonstrate that our method outperforms the original POCO model in terms of reconstruction accuracy and model completeness, providing support for China's national 3D mapping program (3dRGLM).

Key words: POCO, 3D reconstruction, indoor scenes, point cloud with density variation, deep learning

中图分类号: