[1] 陈军,田海波,高崟,等. 实景三维中国的总体架构与主体技术[J/OL]. 测绘学报,2024(2024-04-18).https://kns.cnki.net/kcms/detail/11.2089.P.20240417.0946.002.html. [2] 鲁一慧,魏国忠,宋禄楷,等. 多源点云优化的城市三维模型构建[J]. 测绘通报,2024(S1): 23-28. [3] 杨泽鑫,程效军,丁琼,等. 面向室内场景点云的对象重建[J]. 测绘通报,2017(6): 45-48. [4] XU Yusheng,STILLA U. Toward building and civil infrastructure reconstruction from point clouds: a review on data and key techniques[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14: 2857-2885. [5] 康志忠,杨俊涛. 室内实景三维重建技术综述[J]. 时空信息学报,2024,31(1): 1-10. [6] 刘翔宇,王健,常清法,等. 改进贪婪投影三角化算法的激光点云快速三维重建[J]. 激光与红外,2022,52(5): 763-770. [7] HOU Fei,WANG Chiyu,WANG Wencheng,et al. Iterative Poisson surface reconstruction (iPSR) for unoriented points[J]. ACM Transactions on Graphics,2022,41(4): 1-13. [8] MESCHEDER L,OECHSLE M,NIEMEYER M,et al. Occupancy networks: learning 3D reconstruction in function space[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE,2019: 4455-4465. [9] PARK J J,FLORENCE P,STRAUB J,et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE,2019: 165-174. [10] BOULCH A,MARLET R. POCO: point convolution for surface reconstruction[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE,2022: 6292-6304. [11] WU Zhirong,SONG Shuran,KHOSLA A,et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE,2015: 1912-1920. [12] SHANMUGAM D,BLALOCK D,BALAKRISHNAN G,et al. Better aggregation in test-time augmentation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE,2021: 1194-1203. [13] BOULCH A,PUY G,MARLET R. FKAConv: feature-kernel alignment for point cloud convolution[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing,2021: 381-399. [14] HANDA A,WHELAN T,MCDONALD J,et al. A benchmark for RGB-D visual odometry,3D reconstruction and SLAM[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong: IEEE,2014: 1524-1531. [15] 白静,司庆龙,秦飞巍. 基于卷积神经网络和投票机制的三维模型分类与检索[J]. 计算机辅助设计与图形学学报,2019,31(2): 303-314. |