测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 20-26.doi: 10.13474/j.cnki.11-2246.2025.0404

• 人工智能与视觉系统 • 上一篇    

复杂场景下基于关键帧选取与回环约束的视觉/惯性导航算法

郝春霆1, 刘飞1,2, 王坚1, 韩厚增1, 李艳东1   

  1. 1. 北京建筑大学测绘与城市空间信息学院, 北京 102616;
    2. 北京建筑大学科学技术发展研究院, 北京 102616
  • 收稿日期:2024-07-17 发布日期:2025-04-28
  • 通讯作者: 刘飞。E-mail:liufei1@bucea.edu.cn
  • 作者简介:郝春霆(1999—),男,硕士生,主要研究方向为视觉惯性SLAM。E-mail:haochunting2022@163.com
  • 基金资助:
    国家自然科学青年基金(42104017);北京建筑大学双塔计划(JDYC20220825);北京建筑大学青年教师科研能力提升计划(X21021)

Visual inertial navigation algorithm based on key frame selection and loopclosure constraint in complex scenes

HAO Chunting1, LIU Fei1,2, WANG Jian1, HAN Houzeng1, LI Yandong1   

  1. 1. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China;
    2. Institute of Science and Technology Development, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
  • Received:2024-07-17 Published:2025-04-28

摘要: 针对无人车在复杂场景下长时间运动时,前一帧图像误差会传播到下一帧中,导致视觉/惯性里程计算法出现误差累积的问题,本文提出一种基于关键帧回环约束的多状态约束卡尔曼滤波视觉/惯性里程计算法。首先,保留固定时间间隔关键帧的位姿,充分利用图像信息,有效地限制状态增长;然后,利用词袋模型进行回环检测,确定发生回环的关键帧,并将回环约束的观测量添加至特征追踪中进行测量更新;最后,在公开数据集和真实环境下进行验证分析。试验结果表明,本文算法相比于MSCKF算法,有效减少了定位误差且更加接近真实的运动轨迹,具有更高的定位精度和更好的稳健性。

关键词: 视觉惯性里程计, MSCKF, 词袋模型, 回环检测, 关键帧

Abstract: In order to solve the problem that the error of the previous frame will be propagated to the next frame when the unmanned vehicle moves for a long time in a complex scene, resulting in the error accumulation of the visual inertia odometry, a multi-state constrained Kalman filter visual inertia odometry algorithm based on key frame loopclosure constraints is proposed. Firstly, the pose of the key frame with fixed time interval is preserved to make full use of the image information and limit the state growth effectively.Then, the loop closure detection is carried out using the bag of words model to determine the key frame where the loop closure occurs, and the observations of loop closure constraintsare add to the feature track for measurement update.Finally, validation analysis is performed in both public datasets and real environments. Experimental results show that compared with MSCKF algorithm, the proposed algorithm can effectively reduce the positioning error and get closer to the real motion trajectory,with higher positioning accuracy and better robustness.

Key words: visual inertia odometer, MSCKF, bag of words model, loopclosure detection, key frame

中图分类号: