测绘通报 ›› 2017, Vol. 0 ›› Issue (9): 75-77,82.doi: 10.13474/j.cnki.11-2246.2017.0291

• 技术交流 • 上一篇    下一篇

LiDAR数据滤波中基于切片的断裂线优化方法

毛卫华1, 秦爽2, 付挺芳3, 祝彦敏1   

  1. 1. 浙江省测绘科学技术研究院, 浙江 杭州 310012;
    2. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    3. 长兴宏达测绘有限公司, 浙江 长兴 313100
  • 收稿日期:2016-12-16 出版日期:2017-09-25 发布日期:2017-10-12
  • 作者简介:毛卫华(1975-),男,硕士,教授级高级工程师,主要研究方向为地理信息系统、遥感.E-mail:maoweihua@vip.qq.com
  • 基金资助:
    国家科技支撑计划课题(2014BAK07B04);国家自然科学基金(41571437);浙江省科技计划(2015C33);测绘地理信息公益性科研专项(201512024)。

Optimization Method Based on the Sliced Breakline in Filtering of LiDAR Data

MAO Weihua1, QIN Shuang2, FU Tingfang3, ZHU Yanmin1   

  1. 1. Zhejiang Academy of Surveying and Mapping, Hangzhou 310012, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    3. Changxing Hongda Surveying and Mapping Co.Ltd., Changxing 313100, China
  • Received:2016-12-16 Online:2017-09-25 Published:2017-10-12

摘要: 为了克服一般自动滤波算法对复杂地形的不适应性而产生大量误分的现象,提出了基于切片数据的LiDAR数据线分类滤波算法。该算法利用人眼对地形判断的先验知识,并使用多层次自适应高度阈值的滤波方法得到初始滤波结果,再利用三维空间中的角度特性进行优化,从而对断裂线地形能取得很好的滤波效果。最后采用VC++编程实现了本文提出的线分类算法,并经过试验分析比较,证明了该算法的适用性,能够适应高精度DEM的快速制作。

关键词: 机载LiDAR, 点云, DEM, 滤波, 线分类

Abstract: In order to overcome the large number of misclassification errors caused by the general automatic filtering algorithm for complex terrain, the paper proposes a line classification algorithm for LiDAR data based on slice data. The algorithm uses a priori knowledge of the terrain of human judgment and multi-level automatic filtering method and high threshold to obtain the initial filtering result. Then the angle characteristics of 3D space are used to optimize the result. Finally we can achieve a good filtering effect on the breakline terrain. In this paper we use the VC++ programming to realize the algorithm of line classification, and prove the applicability of the algorithm through experimental analysis and comparison, which can adapt to the rapid production of high precision DEM.

Key words: airborne LiDAR, point cloud, DEM, filter, line classification

中图分类号: