测绘通报 ›› 2022, Vol. 0 ›› Issue (6): 82-87.doi: 10.13474/j.cnki.11-2246.2022.0176.

• 学术研究 • 上一篇    下一篇

利用点云配准的空地影像融合技术

谢洪1, 陈立波2, 聂倩2, 吴玮2, 张沛1   

  1. 1. 武汉大学测绘学院, 湖北 武汉 430079;
    2. 宁波市测绘和遥感技术研究院, 浙江 宁波 315042
  • 收稿日期:2021-07-23 发布日期:2022-06-30
  • 作者简介:谢洪(1987-),男,博士,讲师,研究方向为移动激光测量与三维计算机视觉。E-mail:hxie@sgg.whu.edu.cn
  • 基金资助:
    国家重点研发计划( 2020YFD1100200)

Air-ground image fusion technology with point cloud registration

XIE Hong1, CHEN Libo2, NIE Qian2, WU Wei2, ZHANG Pei1   

  1. 1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
    2. Ningbo Institute of Surveying, Mapping and Remote Sensing, Ningbo 315042, China
  • Received:2021-07-23 Published:2022-06-30

摘要: 为实现空地影像的高精度融合,本文提出了一种基于密集匹配点云配准的融合方法,并与利用空三加密点云配准的融合效果进行了对比。首先,通过对空地影像进行空三加密和密集匹配,得到相应的三维点云;然后,利用基于3DSC特征的SAC-IA算法,完成空中点云和地面点云的粗配准;最后,通过改进的Point-to-Plane ICP算法进行精配准,进而完成空地影像的融合。试验表明,相比空三加密点云,密集匹配点云能够提供更为稳健的配准结果,且能够达到厘米级的精度。

关键词: 空地影像融合, 密集匹配, 空三加密, 点云配准

Abstract: In order to achieve the high-precision fusion of air-ground images, a fusion method based on dense matching is proposed in this paper, and the result is compared with the fusion scheme using point cloud from aerial triangulation. Firstly, the three-dimensional point cloud is obtained by aerial triangulation and dense matching to the air-ground images. Then, the coarse registration of air point cloud and ground point cloud is performed by the SAC-IA algorithm based on 3DSC features. Finally, the refined registration is performed by the improved Point-to-Plane ICP algorithm, leading to the fusion of air-ground images.Compared with the sparse point cloud from aerial triangulation, the experimental results show that the dense matching point cloud can provide more robust registration result, and its accuracy is at centimeter-level.

Key words: air-ground image fusion, dense matching, aerial triangulation, point cloud registration

中图分类号: