测绘通报 ›› 2018, Vol. 0 ›› Issue (1): 1-7.doi: 10.13474/j.cnki.11-2246.2018.0001

• 综述 •    下一篇

移动轨迹聚类方法研究综述

牟乃夏1,2, 徐玉静1, 张恒才2, 陈洁2, 张灵先1, 刘希亮2   

  1. 1. 山东科技大学测绘科学与工程学院, 山东 青岛 266590;
    2. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京 100101
  • 收稿日期:2017-05-27 出版日期:2018-01-25 发布日期:2018-02-05
  • 作者简介:牟乃夏(1973-),男,副教授,主要从事轨迹数据挖掘等方面的研究。E-mail:mounaixia@163.com
  • 基金资助:

    山东省自然科学基金(ZR2016DM02);中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室开放基金;国家自然科学基金(41601421;41401460)

A Review of the Mobile Trajectory Clustering Methods

MOU Naixia1,2, XU Yujing1, ZHANG Hengcai2, CHEN Jie2, ZHANG Lingxian1, LIU Xiliang2   

  1. 1. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
    2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2017-05-27 Online:2018-01-25 Published:2018-02-05

摘要:

轨迹数据是人类移动行为的表征,能够映射出人的出行模式和社会属性等信息。怎样有效挖掘轨迹数据蕴藏的人类活动规律一直是研究的热点。通过轨迹聚类发现行为相似的类簇,从而探究群体的移动模式是轨迹挖掘和深度应用常见的方法之一。本文首先根据轨迹数据的特点,将轨迹数据模型分为轨迹点模型和轨迹段模型,并据此定义相应的相似性度量:空间相似性度量和时空相似性度量;然后,对两类模型的聚类方法进行了综述,并总结不同聚类算法的优缺点,以期为不同应用选取聚类算法提供科学依据;最后对移动轨迹数据聚类方法研究的发展趋势进行了讨论。

关键词: 移动轨迹数据, 数据挖掘, 聚类方法, 研究综述

Abstract:

Mobile trajectory data is the representation of human mobile behavior.Mining this kind of data and discovering their latent semantic information can map the people's travel patterns and social attribute,etc.The clustering method based on similarity is a common method of data mining.Trajectory clustering can be used to find the object group of the similar behavior,so as to find the relevant moving patterns.According to the characteristics of the trajectory data,the trajectory data model is divided into trajectory point model and trajectory segment model,and the corresponding similarity measure is defined:spatial similarity measure and spatio-temporal similarity measure.Then,the clustering methods of two models are reviewed,and the advantages and disadvantages of the algorithms are also summarized,which provide the basis for effective selection of clustering algorithms.Finally,the development trend of the research on the clustering method of the moving trace data is discussed.

Key words: mobile trajectory data, data mining, the clustering method, research summary

中图分类号: