测绘通报 ›› 2018, Vol. 0 ›› Issue (1): 62-66,71.doi: 10.13474/j.cnki.11-2246.2018.0011

• 行业观察 • 上一篇    下一篇

GABA算法的遥感图像分类

牛颖超1,2,3, 周忠发1,2,3, 王历1,2,3, 王小宇1,2,3   

  1. 1. 贵州师范大学喀斯特研究院, 贵州 贵阳 550001;
    2. 贵州省遥感中心, 贵州 贵阳 550001;
    3. 贵州省喀斯特山地生态环境国家重点实验室培育基地, 贵州 贵阳 550001
  • 收稿日期:2017-03-23 修回日期:2017-05-08 出版日期:2018-01-25 发布日期:2018-02-05
  • 通讯作者: 周忠发。E-mail:fa6897@163.com E-mail:fa6897@163.com
  • 作者简介:牛颖超(1992-),女,硕士生,研究方向为地理信息系统与遥感。E-mail:dfnycnxr@163.com
  • 基金资助:

    国家自然科学基金(41661088);基于北斗卫星的山地高效农业产业园区智能管理系统开发与应用(黔科合GY字〔2015〕3001);贵州省高层次创新型人才培养计划——“百”层次人才(黔科合平台人才【2016】5674)

Remote Sensing Image Classification of GABA Algorithm

NIU Yingchao1,2,3, ZHOU Zhongfa1,2,3, WANG Li1,2,3, WANG Xiaoyu1,2,3   

  1. 1. School of Karst Science, Guizhou Normal University, Guiyang 550001, China;
    2. Remote Sensing Center of Guizhou Province, Guiyang 550001, China;
    3. State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
  • Received:2017-03-23 Revised:2017-05-08 Online:2018-01-25 Published:2018-02-05

摘要:

为了弥补蝙蝠算法后期收敛速度慢、寻优精度不高、易陷入局部最优值的缺点,本文提出了一种新的遥感图像分类算法——GABA算法,该算法将遗传算法中的选择、交叉、变异操作应用到蝙蝠算法中,使蝙蝠算法具有变异机制,避免种群个体陷入局部最优,提高了算法全局寻优能力,增加了蝙蝠算法的多样性。同时,为了突出本文算法的优点,试验将蝙蝠算法、K-means算法、粒子群算法与本文算法结果进行比较,分析评价遥感图像的分类结果。试验表明本文算法在遥感图像分类应用中既提高了分类精度又减少了分类时间,是一种可行、有效的遥感图像分类方法。

关键词: GABA算法, 蝙蝠算法, 遗传算法, 图像分类, 遥感图像

Abstract:

In order to make up for the shortcomings of bat algorithm optimization in late, which convergence rate is slow, the accuracy is not high, and easy to fall into the local optimum, this paper proposes a new classification algorithm-GABA algorithm for remote sensing image, and in the algorithm, the operations of genetic algorithm, including selection, crossover, mutation operator are applied to the bat algorithm. It turns out that the bat algorithm with mutation mechanism to avoid the population into local optimum, improve the ability of global optimization algorithm to increase the diversity of bat algorithm. As the same time, in order to highlight the advantages of this algorithm, experiments compared the results of bat algorithm, K-Means algorithm, particle swarm algorithm and the algorithm, analyze and evaluated the classification results of remote sensing images. And experiments show that in the application of remote sensing image classification, this algorithm can not only improve the classification accuracy, but also reduce the classification time. It is a feasible and effective method for remote sensing image classification.

Key words: GABA algorithm, bat algorithm, genetic algorithm, image classification, remote sensing image

中图分类号: