测绘通报 ›› 2019, Vol. 0 ›› Issue (8): 78-81,87.doi: 10.13474/j.cnki.11-2246.2019.0256

• 技术交流 • 上一篇    下一篇

深度卷积网络支持下的遥感影像井盖部件检测

杨梦圆1, 刘伟1,2, 尹鹏程3, 谢梦1   

  1. 1. 江苏师范大学地理测绘与城乡规划学院, 江苏 徐州 221116;
    2. 资源与环境信息系统国家重点实验室, 北京 100101;
    3. 徐州市国土资源局, 江苏 徐州 221006
  • 收稿日期:2018-12-24 出版日期:2019-08-25 发布日期:2019-09-06
  • 通讯作者: 刘伟。E-mail:grid_gis@126.com E-mail:grid_gis@126.com
  • 作者简介:杨梦圆(1995-),女,硕士生,研究方向为遥感图像处理与目标识别。E-mail:ymy2018@126.com
  • 基金资助:
    国家自然科学基金(41601405);江苏省国土资源科技项目(2018054);徐州市国土资源科技项目(XZGTKJ2018001);江苏省研究生科研与实践创新计划项目(KYCX18_2163)

Manhole cover object detection in remote sensing imagery with deep convolutional neural networks

YANG Mengyuan1, LIU Wei1,2, YIN Pengcheng3, XIE Meng1   

  1. 1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China;
    2. State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China;
    3. Bureau of Land and Resources of Xuzhou, Xuzhou 221006, China
  • Received:2018-12-24 Online:2019-08-25 Published:2019-09-06

摘要: 数字城市管理发展中城市部件调查是一项重要的任务,但是城市井盖部件信息获取存在人工调绘效率低、精度难以保证等缺陷,影响城市井盖部件的及时更新。因此本文利用深度卷积神经网络模型,通过小卷积核、尾部裁剪和保持输入大小等改进边缘检测网络(HED)并增加两层卷积运算提取目标,提出HED-C网络模型,实现了端到端的井盖部件目标检测。试验结果表明,利用HED-C模型井盖部件召回率可达96.58%,查准率可达97.93%,相较Faster R-CNN、YOLO和SSD网络模型,综合性能有了较大提高。

关键词: 井盖, 遥感图像, 目标检测, 深度卷积网络, 端到端

Abstract: Urban component survey is an important task in the development of digital city management. However, the manhole cover information acquisition still has shortcomings such as low efficiency of manual surveying and high leakage rate. To address these problems, this paper proposes an effective method for detecting manhole cover objects in remote sensing images. We redesign the feature extractor by adopting VGG (visual geometry group) and HED (holistically-nested edge detection) side-output module, which can increase the variety of receptive field size. Then, the detection is performed by a multi-level convolution matching network for object detection based on fused feature maps, which combines several feature maps that enables small and densely packed manhole cover objects to produce stronger response. The results show that the proposed method is more accurate than existing methods for detecting manhole cover in remote sensing images.

Key words: manhole cover, remote sensing images, object detection, deep convolutional neural networks, end to end

中图分类号: