测绘通报 ›› 2021, Vol. 0 ›› Issue (7): 1-5.doi: 10.13474/j.cnki.11-2246.2021.0199

• 矿山全周期测绘成果 •    下一篇

密集低矮植被区LiDAR点云地面滤波算法

阎跃观, 陈中章, 孙阳, 李泽政, 姚承志   

  1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
  • 收稿日期:2021-05-11 修回日期:2021-05-21 出版日期:2021-07-25 发布日期:2021-08-04
  • 作者简介:阎跃观(1981-),男,博士,副教授,主要从事开采沉陷、大地测量、变形监测等方面的研究。E-mail:yanyueguan@cumtb.edu.cn
  • 基金资助:
    国家自然科学基金(51404272);中央高校基本科研业务费专项资金(2021YQDC09);中国矿业大学(北京)大学生创新训练项目(202102007;202102022)

LiDAR point cloud ground filtering algorithm in dense and low vegetation area

YAN Yueguan, CHEN Zhongzhang, SUN Yang, LI Zezheng, YAO Chengzhi   

  1. Geoscience and Surveying Engineering College, China University of Mining & Technology-Beijing, Beijing 100083, China
  • Received:2021-05-11 Revised:2021-05-21 Online:2021-07-25 Published:2021-08-04

摘要: 针对地形复杂且低矮植被茂密的矿区LiDAR点云特点,本文提出了一种基于坡度信息并结合平面拟合的地面滤波算法。该方法采用二级格网法逐级选取地面种子点,在每个一级格网中,利用地面种子点通过最小二乘拟合法进行平面拟合并构建地面模型,最后达到区分地面点和非地面点的效果。与传统坡度法和布料模拟法的对比试验表明,该方法能够有效滤除密集低矮灌木,以及较好地保留较大坡度地形。

关键词: LiDAR, 密集低矮植被, 坡度, 地面滤波算法

Abstract: Aiming at the characteristics of LiDAR point cloud in mining areas with complex terrain and dense low vegetation, this paper proposes a ground filtering algorithm based on slope information combined with plane fitting. This method uses the second-level grid method to select ground seed points by hierarchical extraction, and uses the ground seed points in each first-level grid to construct a ground model by plane fitting through the least squares fitting method. Finally, ground point and non-ground point can be distinguished. Through comparative experiments with the traditional slope filter and cloth simulation filter, it is concluded that this method can effectively filter out dense and low shrubs and can better retain the larger slope terrain.

Key words: LiDAR, dense low shrubs, slope, ground filtering algorithm

中图分类号: