测绘通报 ›› 2022, Vol. 0 ›› Issue (3): 65-69.doi: 10.13474/j.cnki.11-2246.2022.0079

• 学术研究 • 上一篇    下一篇

融合超体素与成对链接聚类的LiDAR点云分割算法

普东东, 丁海勇   

  1. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2021-03-13 修回日期:2021-05-29 出版日期:2022-03-25 发布日期:2022-04-01
  • 作者简介:普东东(1993-),男,硕士,主要研究方向为LiDAR点云数据处理。E-mail:1920097271@qq.com
  • 基金资助:
    国家自然科学基金(41571350)

LiDAR point cloud segmentation algorithm based on supervoxel and pairwise linkage clustering

PU Dongdong, DING Haiyong   

  1. Nanjing University of Information Science & Technology, School of Remote Sensing & Geomatics Engineering, Nanjing 210044, China
  • Received:2021-03-13 Revised:2021-05-29 Online:2022-03-25 Published:2022-04-01

摘要: 针对现有的LiDAR点云分割算法稳健性差、效率低的问题,本文提出了一种新的层次化聚类分割算法。该算法首先把点云生成自适应分辨率的超体素,然后以超体素为基元,改进成对链接的分割算法,实现三维点云的分割。试验结果表明,该分割算法与现有的分割方法相比,具有更好的稳健性和更高的计算效率,避免了点云过分割和欠分割的问题。本文算法在分割细节方面更加突出,分割结果可有效地保证后续数据处理工作的精度。

关键词: LiDAR点云;超体素;成对链接;分割;稳健性

Abstract: Aiming at the problems of poor robustness and low efficiency of existing LiDAR point cloud segmentation algorithms,this paper proposes a new hierarchical clustering segmentation algorithm.Firstly,a supervoxel with adaptive resolution is generated from the LiDAR point clouds.Then an improved pairwise linkage segmentation algorithm is used to the supervoxel to get the segmentation results.Experimental results show that the proposed segmentation algorithm has better robustness and higher computational efficiency compared with that of the existing segmentation methods.The issues of over segmentation and insufficient segmentation of the point clouds have been solved.The proposed algorithm is more prominent in segmentation details,and the segmentation results can effectively ensure the accuracy of subsequent data processing.

Key words: LiDAR point cloud;supervoxel;pairwise linkage;segmentation;robustness

中图分类号: