测绘通报 ›› 2021, Vol. 0 ›› Issue (9): 140-144.doi: 10.13474/j.cnki.11-2246.2021.0291

• 技术交流 • 上一篇    下一篇

二维哈希算法在地理空间数据批量分幅中的应用

徐益峰1, 陈昱2, 程宝银1, 张蒙1   

  1. 1. 苏州市测绘院有限责任公司, 江苏 苏州 215000;
    2. 苏州市自然资源和规划局, 江苏 苏州 215000
  • 收稿日期:2020-09-10 出版日期:2021-09-25 发布日期:2021-10-11
  • 通讯作者: 张蒙。E-mail:zhm19880229@126.com
  • 作者简介:徐益峰(1980-),男,硕士,高级工程师,主要从事城市基础测绘、控制测量、变形测量等相关新技术研究及应用。E-mail:40135860@qq.com
  • 基金资助:
    江苏省测绘地理信息科研项目(JSCHKY201913)

Application of two-dimensional Hash algorithm in geospatial data batch subdivision

XU Yifeng1, CHEN Yu2, CHENG Baoyin1, ZHANG Meng1   

  1. 1. Suzhou Surveying and Mapping Institute Co., Ltd., Suzhou 215000, China;
    2. Suzhou Natural Resources and Planning Bureau, Suzhou 215000, China
  • Received:2020-09-10 Online:2021-09-25 Published:2021-10-11

摘要: 分幅地理空间数据坐标转换后,还需在新坐标系下重新分幅。对于其中的批量数据,在新旧图幅重叠判断时需要大量的检索操作,快速查找算法能够提高查找效率。本文在建立新旧图幅关联关系、确定重叠判断方法和分割要素的文件存储方式后,提出了一种以新图幅中心点坐标为关键字的二维哈希表索引构建和重叠图幅查找的算法;给出了算法设计思路,并以实际案例验证分析了算法的正确性和有效性。与传统方法相比,该算法具有更高的执行效率,是一种较好的替代算法。

关键词: 二维哈希算法, 哈希表, 批量分幅, 地理空间数据, 坐标转换

Abstract: After the coordinate transformation of divisive geospatial data, it's necessary to re-divided in the new coordinate system. For the batch data, the search efficiency can be improved when judging the overlap of old and new mapsheets by the fast search algorithm. Firstly, the relationship between the old and the new mapsheets is established and the overlapping judgment method and the file storage mode of the segmented elements are determined. Then, the algorithm of constructing two-dimensional Hashtable with center point coordinates of new mapsheet as key-words and finding overlapped mapsheets is proposed. Finally, the algorithm design idea is realized, and the correctness and effectiveness of the algorithm are verified by computational examples in the paper. Compared with traditional methods, this algorithm has higher execution efficiency and is an ideal alternative algorithm.

Key words: two-dimensional Hash algorithm, Hashtable, batch subdivision, geospatial data, coordinate transformation

中图分类号: