测绘通报 ›› 2021, Vol. 0 ›› Issue (11): 92-95.doi: 10.13474/j.cnki.11-2246.2021.345

• 技术交流 • 上一篇    下一篇

随机森林回归模型用于土壤重金属含量多光谱遥感反演

王腾军1,2, 方珂3, 杨耘1,2, 张祥东4   

  1. 1. 长安大学地质工程与测绘学院, 陕西 西安 710054;
    2. 地理信息工程国家重点实验室长安大学合作部, 陕西 西安 710075;
    3. 西安航天天绘数据技术有限公司, 陕西 西安 710100;
    4. 南通智能感知研究院, 江苏 南通 226010
  • 收稿日期:2021-01-21 修回日期:2021-08-07 出版日期:2021-11-25 发布日期:2021-12-02
  • 作者简介:王腾军(1967-),男,博士,副教授,主要从事国土资源调查、资源环境承载力评价等方面的研究。E-mail:wangtj@chd.edu.cn
  • 基金资助:
    中央高校基本科研业务费(300102269205;300102269304);国土资源部退化及未利用土地整治工程重点实验室开放基金(SXJD2017-3)

Multi-spectral remote sensing inversion of soil heavy metal content using random forest regression model

WANG Tengjun1,2, FANG Ke3, YANG Yun1,2, ZHENG Xiangdong4   

  1. 1. College of Geology Engineering and Surveying, Chang'an University, Xi'an 710054, China;
    2. Cooperation Department of Chang'an University, State Key Laboratory of Geographic Information Engineering, Xi'an 710075, China;
    3. Xi'an Aerospace Remote Sensing Data Technology Corporation, Xi'an 710100, China;
    4. Nantong Academy of Intelligent Sensing, Nantong 226010, China
  • Received:2021-01-21 Revised:2021-08-07 Online:2021-11-25 Published:2021-12-02

摘要: 本文以陕西省柞水县大西沟矿区为研究区域,通过实地采集土壤样本,结合在Landsat 8多光谱遥感影像上提取的辐射亮度值和光谱衍生指数,以及从ASTER GDEM提取的3种地形因素,通过相关性分析确定了建模因子,并以K折交叉验证法建立了砷、铜、铅3种重金属元素的随机森林回归模型。试验结果表明,所建立模型的预测精度优于多元线性回归模型和CART模型,可见随机森林回归模型适用于在小样本情况下的矿区重金属含量反演。经现场调查,空间反演结果与实际情况较符合,证明了基于多光谱遥感的随机森林回归模型在矿区土壤重金属反演中的准确性。

关键词: 土壤重金属反演, 多光谱遥感, K折交叉验证, 随机森林回归模型

Abstract: This paper takes Daxigou mining area in Zhashui county, Shaanxi province as the research area. By collecting soil samples on the spot, combining with radiation luminance value and spectral derivative index extracted from Landsat 8 multi-spectral remote sensing images, and three topographic factors extracted from ASTER GDEM, modeling factors are determined through correlation analysis. The random forest regression model of arsenic, copper and lead is established by K-fold cross validation. The experimental results show that the prediction accuracy of the established model is better than that of the multiple linear regression model and the CART model, which verifies that the random forest regression model is suitable for the heavy metal content inversion in the case of small samples. Through the field investigation, the spatial inversion results are in good agreement with the actual situation, which proves the accuracy of the random forest regression model based on multi-spectral remote sensing in the soil heavy metal inversion of mining area.

Key words: soil heavy metal inversion, multispectral remote sensing, K-fold cross validation, random forest regression model

中图分类号: