测绘通报 ›› 2022, Vol. 0 ›› Issue (2): 56-61.doi: 10.13474/j.cnki.11-2246.2022.0043

• 学术研究 • 上一篇    下一篇

基于比值法的多源多时相数据城区变化检测

乐颖, 夏元平   

  1. 东华理工大学测绘工程学院, 江西 南昌 330013
  • 收稿日期:2021-03-03 发布日期:2022-03-11
  • 通讯作者: 夏元平。E-mail:20432xyp@163.com
  • 作者简介:乐颖(1998-),女,硕士生,主要研究方向为InSAR数据处理。E-mail:782530955@qq.com
  • 基金资助:
    国家自然科学基金(41962018;42174055);江西省科技厅科技星火计划(2016BBB29002);东华理工大学研究生创新基金(HYYC-202122)

Multi-source and multi-temporal data urban change detection based on ratio method

LE Ying, XIA Yuanping   

  1. School of Surveying and Mapping Engineering, East China University of Technology, Nanchang 330013, China
  • Received:2021-03-03 Published:2022-03-11

摘要: 针对中、低分辨率影像采用常规分类方法进行变化检测无法取得理想效果的问题,本文提出了一种基于比值法的雷达数据和光学影像相结合的城市变化检测方法。该方法综合雷达数据和光学影像的优势,以赣州定南县为研究对象,首先利用比值法分别对两种数据源进行城市变化检测,然后通过分析城区地物目标散射特性,对多个时相变化情况进行真彩色合成,最后结合城市建设规划进行分析验证,从而完成城市实时动态变化检测。试验结果表明,利用多源多时相数据进行比值法可成功地提取出试验区域的变化信息,在城区建筑变化检测中,纹理信息更清晰,准确性更高。

关键词: 城市变化检测, 光学影像, 雷达数据, 比值法, 定量分析

Abstract: Aiming at the problem that conventional classification methods for change detection of medium and low resolution images can not achieve ideal results, this paper proposes a method of urban change detection combining radar data and optical images based on ratio method.The method integrates the advantages of radar data and optical image, takes Dingnan county of Ganzhou as the research object,uses ratio method respectively to detect the urban change of two kinds of data sources. Through the analysis of urban ground object target scattering characteristics of the multiple phase change it composite false color. Finally, the city construction planning is analyzed and verified to complete the real-time dynamic change detection of urban.The results show that the ratio method using multi-source and multi-temporal data can successfully extract the change information of the experimental area, and the texture information is clearer and more accurate in the change detection of urban buildings.

Key words: urban change detection, optical image, radar data, ratio method, quantity anaysis

中图分类号: