测绘通报 ›› 2022, Vol. 0 ›› Issue (3): 76-82.doi: 10.13474/j.cnki.11-2246.2022.0081
王刚, 丁华祥
收稿日期:
2021-06-08
出版日期:
2022-03-25
发布日期:
2022-04-01
通讯作者:
丁华祥。E-mail:wydinghx@163.com
作者简介:
王刚(1987-),男,高级工程师,主要从事地籍测量、遥感监测研究。E-mail:362633177@qq.com
基金资助:
WANG Gang, DING Huaxiang
Received:
2021-06-08
Online:
2022-03-25
Published:
2022-04-01
摘要: 本文以雷州半岛为研究区,利用Sentinel-2A影像数据和真实植被样本数据,综合探讨了机器学习中随机森林与支持向量机的分类效果,并与传统的最大似然法进行比较。提取Sentinel-2A影像9个波段、7个植被指数、72个纹理特征,通过递归特征消除法挑选了10个特征组合,并将其应用于3种分类方法中,对其分类效果进行比较。结果表明:①有效使用多种特征变量是提高植被类型识别精度的关键,就不同特征对植被类型识别的重要性而言,光谱特征与纹理特征相当且大于植被指数,三者重要性相差不大;②随机森林分类效果最佳,不但能对特征进行有效选择,而且能保证植被类型提取精度,提高运行效率;③基于随机森林特征选择的递归特征消除法得到的特征组合不能对其他分类器性能进行优化,对随机森林模型本身的优化效果也有限。
中图分类号:
王刚, 丁华祥. Sentinel-2A数据支持下的雷州半岛植被类型识别[J]. 测绘通报, 2022, 0(3): 76-82.
WANG Gang, DING Huaxiang. Recognition of vegetation types in Leizhou Peninsula based on Sentinel-2A data[J]. Bulletin of Surveying and Mapping, 2022, 0(3): 76-82.
[1] HANSEN M C, LOVELAND T R. A review of large area monitoring of land cover change using Landsat data[J]. Remote Sensing of Environment, 2012, 122:66-74. [2] TOWNSHEND J R, MASEK J G, HUANG Chengquan, et al. Global characterization and monitoring of forest cover using Landsat data:opportunities and challenges[J]. International Journal of Digital Earth, 2012, 5(5):373-397. [3] LI Xiaodong, LING Feng, FOODY G M, et al. Monitoring high spatiotemporal water dynamics by fusing MODIS, Landsat, water occurrence data and DEM[J]. Remote Sensing of Environment, 2021, 265:112680. [4] HEIMHUBER V, TULBURE M G, BROICH M. Addressing spatio-temporal resolution constraints in Landsat and MODIS-based mapping of large-scale floodplain inundation dynamics[J]. Remote Sensing of Environment, 2018, 211:307-320. [5] WU Mingquan, YANG Chenghai, SONG Xiaoyu, et al. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion[J]. Scientific Reports, 2018, 8:2016. [6] BARGIEL D. A new method for crop classification combining time series of radar images and crop phenology information[J]. Remote Sensing of Environment, 2017, 198:369-383. [7] WANG Qunming, ATKINSON P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018, 204:31-42. [8] ARVOR D, BETBEDER J, DAHER F R G, et al.Towards user-adaptive remote sensing:knowledge-driven automatic classification of Sentinel-2 time series[J]. Remote Sensing of Environment, 2021, 264:112615. [9] SCHEFFLER D, FRANTZ D, SEGL K. Spectral harmonization and red edge prediction of Landsat-8 to Sentinel-2 using land cover optimized multivariate regressors[J]. Remote Sensing of Environment, 2020, 241:111723. [10] CAI Yaping, GUAN Kaiyu, PENG Jian, et al. A highperformance and in-season classification system of fieldlevel crop types using time-series Landsat data and a machine learning approach[J]. Remote Sensing of Environment, 2018, 210:35-47. [11] KUMAR P, GUPTA D K, MISHRA V N, et al. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data[J]. International Journal of Remote Sensing, 2015, 36(6):1604-1617. [12] ZHAN Yulin, MUHAMMAD S, HAO Pengyu, et al. The effect of EVI time series density on crop classification accuracy[J]. Optik, 2018, 157:1065-1072. [13] BAUER-MARSCHALLINGER B, SABEL D, WAGNER W. Optimisation of global grids for high-resolution remote sensing data[J]. Computers&Geosciences, 2014, 72:84-93. [14] MORENO-MARTÍNEZÁ, CAMPS-VALLS G, KATTGE J, et al. A methodology to derive global maps of leaf traits using remote sensing and climate data[J]. Remote Sensing of Environment, 2018, 218:69-88. [15] 王娜,李强子,杜鑫,等.单变量特征选择的苏北地区主要农作物遥感识别[J].遥感学报, 2017, 21(4):519-530. [16] HUANG Zan, CHEN H, HSU C J, et al. Credit rating analysis with support vector machines and neural networks:a market comparative study[J]. Decision Support Systems, 2004, 37(4):543-558. [17] BOUSQUET O. New approaches to statistical learning theory[J]. Annals of the Institute of Statistical Mathematics, 2003, 55(2):371-389. [18] CHANG C C, LIN C J. Libsvm[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27. |
[1] | 王艳军, 林云浩, 王书涵, 李少春, 王孟杰. OSM辅助车载LiDAR点云三维道路边界精细提取[J]. 测绘通报, 2022, 0(7): 18-25. |
[2] | 柳林, 孙毅, 李万武. 基于CNN海上钻井平台检测模型的构建及训练算法分析[J]. 测绘通报, 2022, 0(7): 26-32,99. |
[3] | 孔瑞瑶, 谢涛, 马明, 孔瑞林. CatBoost模型在水深反演中的应用[J]. 测绘通报, 2022, 0(7): 33-37. |
[4] | 温雨笑, 吕杰, 马庆勋, 张鹏, 徐汝岭. 高光谱和LiDAR联合反演森林生物量研究[J]. 测绘通报, 2022, 0(7): 38-42. |
[5] | 江泽霖, 邓健, 栾海军, 李兰晖. 基于逐日夜间灯光遥感的新冠肺炎疫情变化信息快速提取——以北京市为例[J]. 测绘通报, 2022, 0(7): 43-48. |
[6] | 郑艳, 何欢, 卜丽静, 金鑫. 自相似性和边缘保持分解的超分辨率重建算法[J]. 测绘通报, 2022, 0(7): 54-59. |
[7] | 冉崇宪, 李森磊. 利用无人机多光谱影像提取树冠信息[J]. 测绘通报, 2022, 0(7): 112-117. |
[8] | 刘立, 董先敏, 刘娟, 文学虎. 人机融合智能的遥感解译生产新方法[J]. 测绘通报, 2022, 0(7): 118-123,137. |
[9] | 艾敏, 景慧, 田禹东, 郭兰勤, 裴渊杰. 近20年哈尔滨市呼兰区土地利用覆盖变化及驱动分析[J]. 测绘通报, 2022, 0(7): 124-128. |
[10] | 刘玉贤, 阮明浩, 闫臻. 一种基于机载激光点云的门型电塔精确提取方法[J]. 测绘通报, 2022, 0(7): 129-133. |
[11] | 刘国超, 彭卫平, 杨水华, 胡周文. 地质雷达+三维测量内窥镜的城市道路病害检测与应用[J]. 测绘通报, 2022, 0(7): 134-137. |
[12] | 刘小玉, 刘扬, 杜明义, 张敏, 贾竞珏, 杨恒. 基于DeeplabV3+的建筑垃圾堆放点识别[J]. 测绘通报, 2022, 0(4): 16-19,43. |
[13] | 李佳豪, 周吕, 马俊, 杨飞, 咸凌霄. 利用PS-InSAR技术进行城市地铁沿线形变监测与机理分析[J]. 测绘通报, 2022, 0(4): 20-25. |
[14] | 师芸, 石龙龙, 牛敏杰, 赵侃. 基于单阶段实例分割网络的黄土滑坡多任务自动识别[J]. 测绘通报, 2022, 0(4): 26-31. |
[15] | 窦世卿, 陈治宇, 徐勇, 郑贺刚, 苗林林, 宋莹莹. 基于多特征融合与典型降维方法的高光谱影像分类[J]. 测绘通报, 2022, 0(4): 32-36,50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||