测绘通报 ›› 2022, Vol. 0 ›› Issue (6): 55-61.doi: 10.13474/j.cnki.11-2246.2022.0171.

• 学术研究 • 上一篇    下一篇

改进DeepLabV3+网络的遥感影像道路综合提取方法

任月娟, 葛小三   

  1. 河南理工大学测绘与国土信息工程学院, 河南 焦作 454003
  • 收稿日期:2021-07-02 发布日期:2022-06-30
  • 通讯作者: 葛小三。E-mail:gexiaosan@163.com
  • 作者简介:任月娟(1996-),女,硕士生,主要从事遥感、地理信息服务技术方面的研究。E-mail:renyuejuan2020@163.com
  • 基金资助:
    河南省自然科学基金(222300420450);国家自然科学基金(41572341);河南省高等教育教学改革研究与实践项目(学位与研究生教育)(2021SJGLX100Y)

An road synthesis extraction method of remote sensing image based on improved DeepLabV3+ network

REN Yuejuan, GE Xiaosan   

  1. School of Surveying and Mapping and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
  • Received:2021-07-02 Published:2022-06-30

摘要: 遥感图像复杂场景道路提取过程受树木和建筑物阴影,以及荒地、空地等因素干扰较多。针对利用DeepLabV3+网络模型进行道路提取时存在的道路信息不完整和细节信息丢失的问题,本文提出了一种改进DeepLabV3+网络的遥感影像道路提取方法。该方法以轻量级的MobileNetV2作为骨干网络进行特征提取,采用空间金字塔池化模块获得多尺度道路信息特征,从而减少道路遥感图像细节的损失,并提高网络模型的道路提取精度。在DeepGlobe数据集上进行道路提取试验的结果表明,该方法在提升准确率的基础上,有效降低了计算的复杂度;像素准确率和交并比分别达79.7%、64.3%,均优于DeepLabV3+网络及其他经典网络模型,表现出更优异的道路提取能力。

关键词: 道路提取, 改进DeepLabV3+, MobileNetV2, 空间金字塔池化

Abstract: In the process of road extraction of complex scenes from remote sensing images, the shadows of trees and buildings as well as wasteland and open space are often interfered by many factors. In view of the problems of incomplete road information and loss of detail information in road extraction from DeepLabV3+ network model, this paper proposes a road extraction method of remote sensing image based on DeepLabV3 + network, which utilizes lightweight MobileNetV2 as the backbone network for feature extraction. The spatial pyramid pooling module is used to obtain multi-scale road information features to reduce the loss of details of road remote sensing images and improve the accuracy of road extraction. Experimental results of road extraction on the DeepGlobe dataset show that the proposed method can effectively reduce the computational complexity while ensuring that the accuracy is improved. In terms of pixel accuracy and intersection ratio, it reaches 79.7% and 64.3%, respectively, which are superior to DeepLabV3+ network and other classical network models, showing better road extraction ability.

Key words: road extraction, improved DeepLabV3+, MobileNetV2, space pyramid pool

中图分类号: