测绘通报 ›› 2022, Vol. 0 ›› Issue (7): 38-42.doi: 10.13474/j.cnki.11-2246.2022.0200

• 学术研究 • 上一篇    下一篇

高光谱和LiDAR联合反演森林生物量研究

温雨笑, 吕杰, 马庆勋, 张鹏, 徐汝岭   

  1. 西安科技大学, 陕西 西安 710054
  • 收稿日期:2021-09-06 出版日期:2022-07-25 发布日期:2022-07-28
  • 通讯作者: 吕杰。E-mail:rsxust@163.com
  • 作者简介:温雨笑(1998—),女,硕士生,研究方向为林业遥感应用。E-mail:841897570@qq.com
  • 基金资助:
    国家自然科学基金(41674013;41874012)

Study on inversion of forest biomass by LiDAR and hyperspectral

WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling   

  1. Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2021-09-06 Online:2022-07-25 Published:2022-07-28

摘要: 估算森林地上生物量(AGB)对于全球实现碳中和目标至关重要。本文以美国缅因州Howland森林为研究区域,借助地面实测样地数据,对比分析协同不同数据源(高光谱和LiDAR)和机器学习算法(随机森林、支持向量机、梯度提升决策树和K最邻近回归)的研究,以改善Howland森林的生物量估计精度。结果表明,采用LiDAR和高光谱植被指数变量模型的最佳精度分别为0.874和0.868,协同高光谱和LiDAR变量并采用梯度提升决策树回归模型的精度为0.927,即多源遥感数据要优于单一数据源。高光谱和LiDAR数据的协同使用对于提高类似于Howland地区或更广泛区域的生物量估计的准确性,具有普遍的适用性与一定的应用前景。

关键词: LiDAR, 高光谱遥感, 森林地上生物量, 机器学习, 梯度提升决策树

Abstract: Estimating forest aboveground biomass (AGB) is critical to achieving global carbon neutral goals. In this study, Howland forest in Maine, USA is taken as the research area. With the ground measured sample site data, different data sources (airborne LiDAR and hyperspectral remote sensing data) and machine learning algorithms (random forest, support vector machine, gradient boosting decision tree and K-nearest neighbor) are compared and analyzed. It is to improve the estimation accuracy of Howland forest AGB. The results show that the optimal accuracy of the model with airborne LiDAR and hyperspectral vegetation index variables is 0.874 and 0.868 respectively. The accuracy of the regression model with the combination of airborne LiDAR and hyperspectral vegetation index variables and gradient boosting decision tree is 0.927, that is, multi-source remote sensing data is better than a single data source. The synergistic use of LiDAR and hyperspectral data has applicability and application prospects for improving the accuracy of biomass estimates in areas such as Howland and beyond.

Key words: LiDAR, hyperspectral remote sensing, forest aboveground biomass, machine learning, GBDT

中图分类号: