[1] 中国人工智能2.0发展战略研究项目组. 中国人工智能2.0发展战略研究[M]. 杭州:浙江大学出版社, 2018. [2] 高俊. 图到用时方恨少, 重绘河山待后生:《测绘学报》60年纪念与前瞻[J]. 测绘学报, 2017, 46(10):1219-1225. [3] MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet:fast and accurate LiDAR semantic segmentation[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau:IEEE, 2019. [4] XU Chenfeng, WU Bichen, WANG Zining, et al. SqueezeSegV3:spatially-adaptive convolution for efficient point-cloud segmentation[C]//Proceedings of the 16th European Conference on Computer Vision. New York,USA:ACM, 2020. [5] GAO Biao, PAN Yancheng, LI Chengkun, et al. Are we hungry for 3D LiDAR data for semantic segmentation? A survey of datasets and methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7):6063-6081. [6] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA:[s.n.], 2017. [7] ENGELMANN F, KONTOGIANNI T, HERMANS A, et al. Exploring spatial context for 3D semantic segmentation of point clouds[C]//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. Venice, Italy:IEEE, 2017. [8] ENGELMANN F, KONTOGIANNI T, SCHULT J, et al. Know what your neighbors do:3D semantic segmentation of point clouds[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2019. [9] LI Yangyan, BU Rui, SUN Mingchao, et al. PointCNN:convolution on x-transformed points[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York,USA:ACM, 2018. [10] HUANG Q G, WANG W Y, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:[s.n.], 2018. [11] SU Hang, JAMPANI V, SUN Deqing, et al. SPLATNet:sparse lattice networks for point cloud processing[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE,2018. [12] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018. [13] LIU Fangyu, LI Shuaipeng, ZHANG Liqiang, et al. 3DCNN-DQN-RNN:a deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE,2017. [14] LAWIN F J, DANELLJAN M, TOSTEBERG P, et al. Deep projective 3D semantic segmentation[M]//Computer Analysis of Images and Patterns. Cham:Springer International Publishing, 2017. [15] WU Bichen, WAN A, YUE Xiangyu, et al. SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia:IEEE,2018. [16] WU Bichen, ZHOU Xuanyu, ZHAO Sicheng, et al. SqueezeSegV2:improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada:IEEE, 2019. [17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE,2016. [18] BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI:a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South):IEEE, 2019. [19] AKSOY E E, BACI S, CAVDAR S. SalsaNet:fast road and vehicle segmentation in LiDAR point clouds for autonomous driving[C]//Proceedings of 2020 IEEE Intelligent Vehicles Symposium. Las Vegas, NV, USA:IEEE, 2020. [20] CORTINHAL T, TZELEPIS G, AKSOY E E. SalsaNext:fast, uncertainty-aware semantic segmentation of LiDAR point clouds[C]//Proceedings of the 15th International Symposium on Advances in Visual Computing. New York,USA:ACM, 2020. |