测绘通报 ›› 2022, Vol. 0 ›› Issue (11): 26-31.doi: 10.13474/j.cnki.11-2246.2022.0320

• 学术研究 • 上一篇    下一篇

利用无人机高光谱影像的红树林群落物种分类

易俐娜1, 张桂峰2,3, 魏征4,5, 王冕卿1, 刘晋珂1, 王柳靖1   

  1. 1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
    2. 中国科学院空天信息创新研究院, 北京 100094;
    3. 中国科学院大学, 北京 100190;
    4. 国家海洋局南海规划与环境研究院, 广东 广州 510145;
    5. 南海遥感测绘协同应用技术创新中心, 广东 广州 510145
  • 收稿日期:2022-05-17 发布日期:2022-12-08
  • 通讯作者: 张桂峰,E-mail:zhanggf@aircas.ac.cn
  • 作者简介:易俐娜(1986-),女,博士,讲师,研究方向为无人机高光谱遥感、高分辨率遥感、激光点云数据处理及信息提取。E-mail:lina1986350@163.com
  • 基金资助:
    高分遥感测绘应用示范系统(二期)(42-Y30B04-9001-19/21);国家自然科学基金(61405204);中央高校基本科研业务费项目-中国矿业大学(北京)(2022YQDC12);中国科学院战略性先导科技专项(A类)(XDA13020506);中国科学院科研仪器设备研制项目(YJKYYQ20170044);国家重点研发计划(2018YFB0504903;2016YFB0501402);中国科学院重点研发项目(Y9F0600Z2F);广东省促进经济发展专项资金粤自然资合[2020]012号

Mangrove forest species classification based on the UAV hyperspectral images

YI Lina1, ZHANG Guifeng2,3, WEI Zheng4,5, WANG Mianqing1, LIU Jinke1, WANG Liujing1   

  1. 1. School of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
    2. Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100094, China;
    3. University of Chinese Academy of Sciences, Beijing 100190, China;
    4. South China Sea Institude of Planning and Environmental Research, Guangzhou 510145, China;
    5. Technology Innovation Center for South China Sea Remote Sensing, Surveying and Mapping Collaborative Application Ministry of Natural Resources, Guangzhou 510145, China
  • Received:2022-05-17 Published:2022-12-08

摘要: 近年来红树林群落中物种结构简单、功能退化等环境问题日趋严重,为了及时准确掌握红树林群落的物种空间格局与分布,本文首先基于深圳福田红树林自然保护区无人机高光谱影像,利用归一化差值植被指数和归一化潮间红树林指数提取植被区域;然后在植被区域根据最佳指数法选取信息量大、波段相关性小的波段组合,分别采用基于像素支持向量机分类方法和面向对象影像分类方法对红树林物种进行分类。试验结果表明,基于像素支持向量机分类方法的总体精度为81.03%;利用面向对象影像分类方法的总体精度为85.58%。面向对象影像分类方法能有效去除椒盐噪声,充分利用对象光谱、形状及纹理信息,提供更准确的红树林分布信息。

关键词: 高光谱, 无人机, 红树林, 支持向量机, 面向对象

Abstract: In recent years, mangrove forest community species losses and functional degradation have become more and more serious. In order to timely and accurately extract the spatial pattern and distribution information of mangrove forest, this paper first extracts the vegetation area based on the UAV hyperspectral image of Futian mangrove nature reserve in Shenzhen using the normalized difference vegetation index and intertidal mangrove index, and then selected the band combination using the best index method. The pixel-based support vector machine classification (SVM) and object-oriented image classification (OOC) methods are used to accurately identify mangrove species. The experimental results show that the overall accuracy of SVM classification and OOC methods are 81.03%, and 85.58% respectively. In conclusion, The OOC methods can effectively remove the salt and pepper noise, makes full use of the spectral, shape and texture information of the object, and provides more accurate mangrove distribution information.

Key words: hyperspectral, unmanned aerial vehicle, mangrove forest, support vector machine, object-oriented classification

中图分类号: