测绘通报 ›› 2022, Vol. 0 ›› Issue (12): 91-96.doi: 10.13474/j.cnki.11-2246.2022.0362

• 学术研究 • 上一篇    下一篇

基于MCS-SCKF的超宽带室内定位算法

张梅, 吕乐, 陈万利, 冯涛   

  1. 安徽理工大学电气与信息工程学院, 安徽 淮南 232000
  • 收稿日期:2022-02-13 出版日期:2022-12-25 发布日期:2023-01-05
  • 通讯作者: 吕乐。E-mail:18324890799@163.com
  • 作者简介:张梅(1979-),女,硕士,副教授,主要研究方向为物联网应用、智能检测与故障诊断。E-mail:xwz098@163.com
  • 基金资助:
    安徽高校自然科学研究(KJ2020A0309)

Ultra-wideband indoor positioning algorithm based on MCS-SCKF

ZHANG Mei, Lü Le, CHEN Wanli, FENG Tao   

  1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232000, China
  • Received:2022-02-13 Online:2022-12-25 Published:2023-01-05

摘要: 针对传统超宽带(UWB)室内定位中非线性跟踪问题,基于当前统计(CS)模型和容积卡尔曼滤波(CKF),本文提出了一种新的定位算法。即采用奇异值分解(SVD)代替标准CKF算法中的Cholesky分解,提高了算法的稳定性,构造了奇异值分解容积卡尔曼滤波器(SCKF)。首先在CS模型的基础上改进了先验参数的函数形式,得到改进的CS模型(MCS),实现模型参数的自适应调整;然后将MCS模型引入SCKF滤波器,实现滤波算法的自适应调整;最后利用MCS-SCKF算法对UWB定位系统模型进行解算,从而得到移动目标位置。仿真和试验结果表明,该算法优于CS模型-卡尔曼滤波算法(CS-KF)和CS模型-SCKF算法(CS-SCKF),提高了UWB室内定位的定位精度。

关键词: UWB, 室内定位, 容积卡尔曼滤波, 当前统计模型, 奇异值分解

Abstract: Aiming at the nonlinear tracking problem in traditional ultra-wideband (UWB) indoor positioning, this paper proposes a new positioning algorithm based on the current statistical (CS) model and volumetric Kalman filter (CKF). The localization algorithm uses singular value decomposition (SVD) to replace the Cholesky decomposition in the standard CKF algorithm to improve the robustness of the algorithm, constructing a singular value decomposition volumetric Kalman filter (SCKF). The functional form of the test parameters is obtained firstly, and the improved CS model (MCS) is obtained to realize the adaptive adjustment of the model parameters; then the MCS model is introduced into the SCKF filter to realize the adaptive adjustment of the filtering algorithm; finally, the MCS-SCKF algorithm can be used to The UWB positioning system model which is solved to obtain the moving target position. Simulation and experimental results show that the algorithm is superior to CS model-Kalman filter algorithm (CS-KF) and CS model-SCKF algorithm (CS-SCKF), and improves the positioning accuracy of UWB indoor positioning.

Key words: ultra-wideband, indoor positioning, volumetric Kalman filter, current statistical model, singular value decomposition

中图分类号: