[1] 秦晓琼,杨梦诗,廖明生,等.应用PSInSAR技术分析上海道路网沉降时空特性[J].武汉大学学报(信息科学版),2017,42(2):170-177. [2] 戴激光,王杨,杜阳,等.光学遥感影像道路提取的方法综述[J].遥感学报,2020,24(7):804-823. [3] 王龙飞,严春满.道路场景语义分割综述[J].激光与光电子学进展,2021,58(12):44-66. [4] 吴强强,王帅,王彪,等.空间信息感知语义分割模型的高分辨率遥感影像道路提取[J].遥感学报,2022,26(9):1872-1885. [5] WU Qiangqiang,LUO Feng,WU Penghai,et al.Automatic road extraction from high-resolution remote sensing images using a method based on densely connected spatial feature-enhanced pyramid[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,14:3-17. [6] LI Peikang,ZANG Yu,WANG Cheng,et al.Road network extraction via deep learning and line integral convolution[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing:IEEE,2016:1599-1602. [7] 胡煦航,程小龙,朱滨,等.基于改进ResUnet的高分辨率遥感影像道路信息提取[J].遥感信息,2022,37(4):87-93. [8] ZHANG Zhijie,ZHANG Chuanrong,LI Weidong.Semantic segmentation of urban buildings from VHR remotely sensed imagery using attention-based CNN[C]//Proceedings of 2020 IGARSS IEEE International Geoscience and Remote Sensing Symposium.Waikoloa:IEEE,2021:1833-1836. [9] 闫志恒,任超,李毅,等.一种改进的融合不同尺度特征的遥感影像道路提取新方法[J].测绘通报,2022(9):58-62. [10] ZHANG Zhengxin,LIU Qingjie,WANG Yunhong.Road extraction by deep residual U-net[J].IEEE Geoscience and Remote Sensing Letters,2018,15(5):749-753. [11] 吴仁哲,蔡嘉伦,刘国祥,等.针对高分影像的RDU-Net乡村路网提取方法[J].遥感信息,2021,36(1):29-36. [12] 张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356-1361. [13] 张长书.利用InSAR技术监测城市地表沉降研究[D].长沙:中南大学,2008. [14] 徐弘毅.InSAR技术在城市道路和地铁沉降监测的应用研究:以深圳市为例[D].深圳:深圳大学,2018. [15] 滕超群.基于InSAR技术的形变灾害监测预测方法及其应用研究[D].淮南:安徽理工大学,2021. [16] 冯颖.基于深度学习的SAR特征提取与目标识别研究[D].成都:电子科技大学,2017. [17] WEI Xiaochen,LV Xiaolei,ZHANG Kaiyu.Road extraction in SAR images using ordinal regression and road-topology loss[J].Remote Sensing,2021,13(11):2080. [18] 张志华,胡长涛,张镇,等.基于PS-InSAR上海地区地表沉降监测与分析[J].自然资源遥感,2022,34(3):106-111. [19] 麻源源,左小清,麻卫峰.基于PS-InSAR的天津地区沉降监测及分析[J].遥感技术与应用,2019,34(6):1324-1331. |