测绘通报 ›› 2023, Vol. 0 ›› Issue (4): 145-149.doi: 10.13474/j.cnki.11-2246.2023.0119

• 技术交流 • 上一篇    下一篇

基于改进DeepLabV3+算法的遥感影像建筑物变化检测

齐建伟1, 王伟峰1, 张乐2, 王光彦3   

  1. 1. 黄河水利职业技术学院, 河南 开封 475004;
    2. 中科北纬(北京)科技有限公司, 北京 100043;
    3. 江苏省工程勘测研究院有限责任公司, 江苏 扬州 225002
  • 收稿日期:2022-12-29 发布日期:2023-04-25
  • 作者简介:齐建伟(1983—),男,硕士,讲师,主要从事无人机遥感测绘等方面的教学和科研工作。E-mail:154515324@qq.com

Building change detection of remote sensing image based on improved DeepLabV3+

QI Jianwei1, WANG Weifeng1, ZHANG Le2, WANG Guangyan3   

  1. 1. Yellow River Conservancy Technical Institute, Kaifeng 475004, China;
    2. Zhongke Beiwei (Beijing) Technology Co., Ltd., Beijing 100043, China;
    3. Jiangsu Engineering Exploration&Surveying Institute Co., Ltd., Yangzhou 225002, China
  • Received:2022-12-29 Published:2023-04-25

摘要: 变化检测是遥感测绘领域的重要任务,作为执法依据,在耕地非农化等场景监测中发挥重大作用。近年来,使用人工智能相关技术进行变化检测,常见的技术方案为叠加两期影像,再使用语义分割算法求解变化区域。本文使用变化检测数据集LEVIR-CD作为试验数据,在DeepLabV3+算法基础上,针对变化检测场景特点,对模型结构进行改进。以DeepLabV3+的孪生网络为主干,使用多层级特征交互操作,充分融合图像特征。结果表明,改进的网络结构更加适合变化检测任务场景。

关键词: 变化检测, 深度学习, 卷积神经网络, 语义分割

Abstract: As an important task in the field of remote sensing, change detection plays an important role in the scenes of law enforcement inspection of satellite land image, farmland conversion. In recent years, relevant practitioners have used AI related technologies to solve the task of change detection. The common technical solution is to concatenate two images by channel dimension and use semantic segmentation algorithm to predict the change area. This paper uses the change detection dataset LEVIR-CD as experimental data,based on DeepLabV3+algorithm, improves the model structure according to the characteristics of change detection task. The siamese network uses DeepLabV3+as the backbone. This paper uses multi-level feature interaction to fully fuse image features. The results show that the improved network structure is more suitable for change detection task.

Key words: change detection, deep learning, convolutional neural network, sematic segmentation

中图分类号: