测绘通报 ›› 2023, Vol. 0 ›› Issue (8): 120-125.doi: 10.13474/j.cnki.11-2246.2023.0243

• 技术交流 • 上一篇    下一篇

一种高光谱遥感影像无损压缩方法与应用

王蕾1,2, 张恒璟1, 高小明2, 邢晨1, 马海超1   

  1. 1. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000;
    2. 自然资源部国土卫星遥感应用中心, 北京 100048
  • 收稿日期:2022-11-10 发布日期:2023-09-01
  • 通讯作者: 高小明。E-mail:gaoxm@lasac.cn
  • 作者简介:王蕾(1997-),男,硕士生,研究方向为遥感影像处理。E-mail:wangleiesc@163.com
  • 基金资助:
    高分专项项目(42-Y30B04-9001-19/21);自然资源部科技创新人才培养工程青年人才项目(12110600000018003929)

A lossless compression method and application of hyperspectral images

WANG Lei1,2, ZHANG Hengjing1, GAO Xiaoming2, XING Chen1, MA Haichao1   

  1. 1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China;
    2. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
  • Received:2022-11-10 Published:2023-09-01

摘要: 针对遥感影像巨大数据量给传输、存储造成巨大压力和压缩比低的问题,本文提出了一种改进的自适应波段重排和最小均方误差预测的高效无损压缩方法。该方法能自适应地确定波段的最佳顺序,并根据最小均方误差预测充分利用这种排序相关性消除影像冗余。首先,该方法对高光谱影像波段自适应分组,在每个组内利用最小生成树算法排序,以提升相邻波段的谱间相关性。然后,对组内波段自适应地选择上下文进行谱间和谱内预测,去除高光谱影像的冗余。最后,对预测残差进行二进制算术编码去除统计冗余,完成高光谱影像无损压缩。基于资源一号高光谱影像的试验结果表明,本文方法有效利用了谱内、谱间相关性,改善了预测性能,优于常用的压缩方法。

关键词: 高光谱影像, 无损压缩, 相关性, 最小生成树, 预测编码, 熵编码

Abstract: Aiming at the problem that the huge amount of data of remote sensing images causes great pressure and low compression ratio to transmission and storage, an efficient lossless compression method with improved adaptive band rearrangement and minimum mean squared error prediction is proposed. This method can adaptively determine the optimal order of the bands, and can make full use of this sort correlation to eliminate image redundancy based on the minimum mean squared error prediction. Firstly, the method adaptively groups the hyperspectral image bands and uses the minimum spanning tree algorithm to sort within each group to improve the inter-spectral correlation of adjacent bands. The intra-band bands are then adaptively selected for inter-spectral and intra-spectral predictions, removing redundancy from hyperspectral images. Finally, the binary arithmetic encoding of the prediction residuals removes statistical redundancy and completes the lossless compression of hyperspectral images. Experimental results based on ZY1-02D hyperspectral images show that this method effectively utilizes the correlation of intra-spectral and inter-spectral, improves the prediction performance, superior to common compression methods.

Key words: hyperspectral images, lossless compression, correlation, minimum spanning tree, predictive coding, entropy coding

中图分类号: