[1] 孙艳丽.联合丰度信息与空谱特征的高光谱影像分类研究[D].北京:中国科学院遥感与数字地球研究所,2017. [2] 孙乐.空谱联合先验的高光谱图像解混与分类方法[D].南京:南京理工大学,2014. [3] 李彩虹,赵祎霏.一种高光谱图像的半监督分类方法[J].测绘通报,2018(2):46-49. [4] 谷雨,徐英,郭宝峰.融合空谱特征和集成超限学习机的高光谱图像分类[J].测绘学报,2018,47(9):1238-1249. [5] CAO Faxian, YANG Zhijing, REN Jinchang, et al. Extreme sparse multionmial logistic regression:a fast and roubust framework for hyperspectral image classification[J].Remote Sensing,2017,9(12):1255. [6] KRISHNAPURAM B, CARIN L, FIGUEIREDO M A T, et al. Sparse multinomial logistic regression:fast algorithms and generalization bounds[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):957-968. [7] BOHNING D. Multinomial logistic-regression algorithm[J].Annals of the Institute of Stati stical Mathematics,1992,44(1):197-200. [8] ZHOU Yicong, PENG Jiangtao, CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(2):1082-1095. [9] 鲍蕊.光谱和空间特征联合的高光谱遥感影像多分类器集成方法[D].南京:南京大学,2016. [10] 王启聪.高光谱图像分类的GPU并行优化研究[D].南京:南京理工大学,2015. [11] LI J, MARPU P R, PLAZA A, et al. Generalized composite kernelframework for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4816-4829. [12] LI J, HUANG X, GAMBA P, et al. Multiple feature learning for hyperspectral image classfication[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(3):1592-1606. [13] LI J, BIOUCAS-DIAS J M, PLAZA A. Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression[J].IEEE Geoscience Remote Sensing Letters,2013,10(2):318-322. [14] BAO R, XIA J, MURA M D, et al. Combining morphological attribute profiles via an ensemble method for hyperspectral image classification[J]. IEEE Geoscience Remote Sensing Letters,2016,13(3):359-363. [15] MURA M D, BENEDIKTSSON J A, WASKE B, et al. Morphological attribute profiles for the analysis of very high resolution images[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(10):3747-3762. |