测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 54-60.doi: 10.13474/j.cnki.11-2246.2023.0327

• 学术研究 • 上一篇    下一篇

顾及地址语义和地理空间特征的多源POI位置融合

李朋朋1,2, 刘纪平1,2, 王勇1,2, 罗安2,3, 桑瑜3, 闫雪峰2   

  1. 1. 西南交通大学地球科学与环境工程学院, 四川 成都 610031;
    2. 中国测绘科学研究院, 北京 100830;
    3. 江苏海洋大学海洋技术与测绘学院, 江苏 连云港 222005
  • 收稿日期:2023-02-17 发布日期:2023-12-07
  • 通讯作者: 刘纪平。E-mail:liujp@casm.ac.cn
  • 作者简介:李朋朋(1994—),男,博士生,研究方向为互联网地理大数据分析挖掘。E-mail:lipengpeng@my.swjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFC3005700);国家自然科学基金(42071384)

Multi-source POI location fusion considering address semantics and geospatial features

LI Pengpeng1,2, LIU Jiping1,2, WAGN Yong1,2, LUO An2,3, SANG Yu3, YAN Xuefeng2   

  1. 1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100830, China;
    3. School of Marine Technologyand Geomatics, Jiangsu Ocean University, Lianyungang 222005, China
  • Received:2023-02-17 Published:2023-12-07

摘要: 多源POI位置融合是实现地理空间数据匹配融合的关键技术之一。然而,由于不同POI数据源之间位置编码的差异及定位误差,导致位置融合更加困难。本文提出了一种顾及地址语义和地理空间特征的多源POI位置融合方法。首先,通过TextRCNN和图注意力网络提取地址属性的语义特征;然后,使用多层感知机提取位置属性的地理空间特征;最后,基于自注意力机制通过特征聚合实现多源POI位置融合,并对成都市百度地图、腾讯地图和高德地图的POI数据进行试验验证。结果表明,该方法显著优于现有方法,平均位置融合精度优于12 m。

关键词: 地址语义, 地理空间特征, TextRCNN, 图注意力网络, 多层感知机, 自注意力机制

Abstract: Multi-source POI location fusion is one of the key technologies for geospatial data matching and fusion. However, due to the difference of location coding and location error between different POI data sources, location fusion becomes more difficult. Multi-source POI location fusion considering address semantics and geospatial feature is proposed. Firstly, semantic features of address attributes are extracted by TextRCNN and graph attention network. Then, Multi-layer perceptron is used to extract geospatial features of location attributes. Finally, multi-source POI location fusion is realized by feature aggregation based on self-attention mechanism. We conduct experimental verification on the POI data of Baidu map, Tencent map and Amap in Chengdu. The results show that this method is significantly superior to the existing methods, and the average location fusion accuracy is better than 12 m.

Key words: address semantics, geospatial features, TextRCNN, graph attention network, multi-layer perceptron, self-attention mechanism

中图分类号: