测绘通报 ›› 2024, Vol. 0 ›› Issue (2): 58-62.doi: 10.13474/j.cnki.11-2246.2024.0210

• 学术研究 • 上一篇    下一篇

多尺度引导滤波对多光谱遥感影像分类精度的影响

吕强1,2, 李朝奎1,2, 谢梦愿1,2, 李豪3, 陈军4   

  1. 1. 湖南科技大学地理空间信息技术国家地方联合工程实验室, 湖南 湘潭 411201;
    2. 湖南科技大学 地球科学与空间信息工程学院, 湖南 湘潭 411201;
    3. 湘潭金豪软件开发有限公司, 湖南 湘潭 411100;
    4. 湖南兴天电子科技股份有限公司, 湖南 长沙 410006
  • 收稿日期:2023-06-25 出版日期:2024-02-25 发布日期:2024-03-12
  • 通讯作者: 李朝奎。E-mail:616059644@qq.com
  • 作者简介:吕强(1999—),男,硕士生,主要从事地理信息技术研究。E-mail:1621824442@qq.com
  • 基金资助:
    国家自然科学基金(42171418); 湖南省自然资源科技计划(20230122CH); 湖南省地理空间信息工程技术研究中心开放课题(HNG12023005); 湖南省高新技术产业科技创新引领计划(2021GK4001);长沙市专家工作站专项计划

Influence of guided filtering at different scales on the classification accuracy of multi-spectral remote sensing images

LÜ Qiang1,2, LI Chaokui1,2, XIE Mengyuan1,2, LI Hao3, CHEN Jun4   

  1. 1. National Joint Engineering Laboratory of Geospatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China;
    2. School of Earth Science and Space Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
    3. Xiangtan Jinhao Software Development Co., Ltd., Xiangtan 411100, China;
    4. Hunan Xingtian Electronic Technology Co., Ltd., Changsha 410006, China
  • Received:2023-06-25 Online:2024-02-25 Published:2024-03-12

摘要: 由于地物的复杂多样性,准确识别其分类精度对遥感数据处理具有重要意义。为提高多光谱遥感数据的分类精度,本文以Landsat 8数据为基础,提出不同尺度引导滤波特征融合NDVI与NDBI的方法,进行多光谱遥感图像的分类。首先,提取多光谱数据第一主成分作为引导图像,原图像为输入图像,依次提取滤波半径为2、4、6、8的引导滤波特征集;然后,将不同滤波半径的引导滤波特征集与图像NDVI与NDBI特征进行融合,采用支持向量机的方法进行监督分类,以此探究不同尺度的引导滤波对多光谱遥感影像分类精度的影响。试验结果表明:①引导滤波在去除噪声的同时能够较好地保留图像的边缘特征;②引导滤波可以提高多光谱遥感影像的分类精度,不同大小引导滤波半径图像在分类方面与原图像相比,较其分类精度均有不同程度的提升,最高总体精度达99.776 3%,Kappa系数为0.997 1;③不同尺度的引导滤波会得到不同的分类结果,当滤波半径R=2时,图像的分类精度最高。

关键词: 引导滤波, 遥感影像, 分类精度, 监督分类

Abstract: Due to the complex diversity of features, accurate identification of their classification accuracy is of great significance to remote sensing data processing. In order to improve the classification accuracy of multi-spectral remote sensing data based on Landsat 8 data, this paper proposes a method of fusing NDVI and NDBI with different scales to classify multi-spectral remote sensing images. Firstly, the first principal component of the multi-spectral data is extracted as the guide image, the original image is the input image, and the guide filter feature set with filter radii of 2, 4, 6 and 8 is extracted in turn. Then,the guided filtering feature set with different filtering radii is fused with the NDVI and NDBI features of the image, and the method of support vector machine is used to supervise the classification, so as to explore the influence of guided filtering of different scales on the classification accuracy of multi-spectral remote sensing images. The experimental results show that:①Guided filtering can better retain the edge features of the image while removing noise.②Guided filtering can improve the classification accuracy of multi-spectral remote sensing images, and the classification accuracy of different sizes of guided filtering radius images and original images has been improved to different degrees compared with the original image,the highest overall accuracy reaches 99.776 3%, and the Kappa coefficient is 0.997 1.③Guided filtering of different scales will obtain different classification results,and when the filter radii R=2, the classification accuracy of the image is the highest.

Key words: guided filtering, remote sensing imagery, classification accuracy, supervise classification

中图分类号: