测绘通报 ›› 2023, Vol. 0 ›› Issue (6): 93-97,103.doi: 10.13474/j.cnki.11-2246.2023.0174
沈鑫甦1, 嵇灵2
SHEN Xinsu1, JI Ling2
摘要: 遥感影像的变化检测在调查监测等自然资源管理中有着广泛应用。针对样本库建设成本过高、深度学习算法困难等问题,本文提出了多时相变化检测方法,以改进影像变化深度学习检测。该方法将不同时相的数据作为不同波段信息进行融合,将变化发现任务转换为图像分割任务,将土地利用矢量数据作为标签数据用于模型训练,建设深度学习样本库。对原始的U型深度学习神经网络结构进行改进,加速模型训练。试验结果表明:①多时相变化检测方法有利于模型训练过程中学习更多的特征,提升了模型的特征提取能力,可得到更好的预测效果;②模型的查全率和查准率都有一定提升,整体预测效果明显提高。
中图分类号: