测绘通报 ›› 2024, Vol. 0 ›› Issue (3): 88-94.doi: 10.13474/j.cnki.11-2246.2024.0315

• 学术研究 • 上一篇    下一篇

利用DeepLabv3+模型提取分析街景图像绿视率——以北京三环内为例

王鸿雁1,2, 车向红2, 徐辛超1, 徐胜华2, 李洪胜3   

  1. 1. 辽宁工程技术大学, 辽宁 阜新 125105;
    2. 中国测绘科学研究院, 北京 100036;
    3. 河北省制图院, 河北 石家庄 050031
  • 收稿日期:2023-07-27 发布日期:2024-04-08
  • 通讯作者: 李洪胜,E-mail:hebmap@163.com
  • 作者简介:王鸿雁(1998—),女,硕士,主要研究方向为图像处理与应用。E-mail:amy_hongyan@qq.com
  • 基金资助:
    国家重点研发计划(2022YFB3904202;2020YFC1511704);地图多维语义智能化提取研究项目(AR2205)

Green visible index extraction and analysis of street view image using DeepLabv3+model:taking within the Third Ring Road in Beijing as an example

WANG Hongyan1,2, CHE Xianghong2, XU Xinchao1, XU Shenghua2, LI Hongsheng3   

  1. 1. Liaoning Technical University, Fuxin 125105, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100036, China;
    3. Hebei Provincial Institute of Cartography, Shijiazhuang 050031, China
  • Received:2023-07-27 Published:2024-04-08

摘要: 基于语义分割模型的绿视率提取缺乏适用性研究,本文首先基于DeepLabv3+语义分割预训练模型和自主标注样本,采用迁移学习策略,构建街景图像语义分割模型,并对其进行精度验证。然后基于构建的街景图像语义分割模型提取计算北京三环内绿视率(GVI),分析点、线尺度下绿视率空间分布特征。结果表明:1相比DeepLabv3+语义分割预训练模型,迁移学习后模型F1值和mIoU值分别提高了7%和3%;2点状尺度上北京三环内绿视率整体呈"西高东低,北高南低"聚类式分布特征,0~0.15区间内街景采样点GVI约占58.1%;3线状尺度上整体呈"环线低环内高"且中心发散式特征分布,0~0.15区间内研究区道路GVI约占59.8%。该研究对于提升城市街道绿化感知程度和城市空间规划具有重要的参考意义。

关键词: 绿视率, 街景数据, 深度学习, 语义分割, 迁移学习

Abstract: The extraction of green vision index based on semantic segmentation model lacks applicability. Based on DeepLabv3+semantic segmentation pre-training model and manually-labeled samples, this study adopts transfer learning strategy to build a semantic segmentation model for street view image, and evaluates model performance. Then, based on the semantic segmentation model of street view image, GVI within the Third Ring Road in Beijing is extracted and calculated, and the spatial distribution characteristics of GVI at point and line scales are analyzed. The results show that:①Compared with DeepLabv3+green vision segmentation pre-trained model, F1 value and mIoU value of the transferred model are increased by 7% and 3%, respectively.②The GVI in the study area at the point scale has a clustering pattern which is high in the northwest and low in the southeast. There are 58.1% of street view sampling points with the GVI values ranging from 0 to 0.15 which indicates a relatively low green vision perception degree within the Third Ring Road in Beijing.③The GVI values at the linear scale are low on the ring road and high between the rings and witnesses a center diverges outward. There are 59.8% of roads with the GVI values ranging from 0 to 0.15. This study can provide an significant reference for improving the perception degree of urban street greening and urban spatial planning.

Key words: green visual index, street view data, deep learning, semantic segmentation, transfer learning

中图分类号: