[1] 交通运输部.2021年交通运输行业发展统计公报[EB/OL].(2022-05-25)[2022-11-08].https://xxgk.mot.gov.cn/2020/jigou/zhghs/202205/t20220524_3656659.html. [2] 黄艳华,吴贤国,曾明平. 相依性条件下运营地铁结构健康风险感知[J]. 武汉大学学报(工学版),2022,55(3):261-268. [3] 薛亚东,高健,李宜城,等. 基于深度学习的地铁隧道衬砌病害检测模型优化[J]. 湖南大学学报(自然科学版),2020,47(7):137-146. [4] 刘春,贾守军,吴杭彬,等. 点云场景认知模式:泛化点云[J]. 测绘学报,2022,51(4):556-567. [5] 李珵,卢小平,朱宁宁,等. 基于激光点云的隧道断面连续提取与形变分析方法[J]. 测绘学报,2015,44(9):1056-1062. [6] 王晓静,唐超,杨晓飞. 激光点云在地铁盾构隧道病害诊断中的应用[J]. 测绘通报,2020(9):33-37. [7] 李俊良. 地铁盾构隧道渗漏水病害点云自动识别研究[D]. 北京:北京交通大学,2021. [8] TREMEAU A,BOREL N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition,1997,30(7):1191-1203. [9] HUANG Hongwei,LI Qingtong,ZHANG Dongming. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology,2018,77:166-176. [10] 赵文剑,郭文浩,周宝定,等.基于智能手机的道路井盖检测与分类[J/OL].测绘地理信息:1-10[2022-11-07]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCd PD66ECMZxmrdk9cEqAc0QVMa9akNoELnvbErd9jHzU B08x1322DWCUaKP&uniplatform=NZKPT. [11] ZHU Junqing,ZHONG Jingtao,MA Tao,et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction,2022,133:103991. [12] NI Xuefeng,MA Ziji,LIU Jianwei,et al. Attention network for rail surface defect detection via consistency of intersection-over-union(IoU)-guided center-point estimation[J]. IEEE Transactions on Industrial Informatics,2022,18(3):1694-1705. [13] TAN Kai,CHENG Xiaojun,JU Qiaoqiao,et al. Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels[J]. IEEE Geoscience and Remote Sensing Letters,2016,13(11):1711-1715. [14] HUANG Hongwei,CHENG Wen,ZHOU Mingliang,et al. Towards automated 3D inspection of water leakages in shield tunnel linings using mobile laser scanning data[J]. Sensors,2020,20(22):6669. [15] CUI Hao,REN Xiaochun,MAO Qingzhou,et al. Shield subway tunnel deformation detection based on mobile laser scanning[J]. Automation in Construction,2019,106:102889. [16] HE Kaiming,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:2980-2988. [17] LIU Ze,LIN Yutong,CAO Yue,et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal:IEEE,2022:9992-10002. [18] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:ACM press,2017:6000-6010. [19] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:770-778. [20] XIE Saining,GIRSHICK R,DOLLÁR P,et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:5987-5995. |