测绘通报 ›› 2024, Vol. 0 ›› Issue (8): 102-108.doi: 10.13474/j.cnki.11-2246.2024.0818

• 学术研究 • 上一篇    

深度学习的大高差高海拔地区高程拟合方法

马下平, 王风凯, 赵庆志, 高余婷   

  1. 西安科技大学测绘科学与技术学院, 陕西 西安 710054
  • 收稿日期:2023-12-14 发布日期:2024-09-03
  • 作者简介:马下平(1984—),男,博士,副教授,主要从事GNSS大地测量数据处理与完备性监测研究。E-mail:celiang0321@163.com
  • 基金资助:
    国家重点研发计划(2016YFB0502102);国家自然科学基金(42274039;42104023)

Elevation fitting method in high altitude area with large elevation difference based on deep learning

MA Xiaping, WANG Fengkai, ZHAO Qingzhi, GAO Yuting   

  1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2023-12-14 Published:2024-09-03

摘要: 大高差高海拔地区的地形复杂多变,传统的高程拟合方法,如多项式拟合、曲面拟合、BP神经网络和遗传算法改进的神经网络等方法,拟合精度都有待提高。本文构建了一种基于深度学习的高程拟合方法,利用西部某铁路控制网的2020年一期二等水准测量数据,采用多层感知器(MLP)作为核心模型,通过结合RAdam优化器和GELU激活函数进行优化,该方法能够有效捕捉该地区的地形特征和高程变化规律,实现高精度的高程拟合。研究分析了不同优化器和激活函数组合对模型性能的影响,结果表明,深度学习模型在大高差高海拔地区高程拟合中表现出较佳性能,其均方误差(MSE)最低,平均绝对误差(MAE)最小,决定系数R2最接近1,显著优于BP神经网络和遗传算法改进的神经网络方法。特别是RAdam优化器和GELU激活函数的组合,在模型性能上表现最佳。本文所构建出的深度学习大高差高程拟合方法,不仅精度较高且具有良好的泛化能力,能够适应大高差高海拔地区复杂多变的地形特征。

关键词: 深度学习, 高程拟合, 大高差高海拔地区, 优化器, 激活函数

Abstract: The terrain elevation in high altitude areas with large elevation differences is complex and variable. Although traditional elevation fitting methods,such as linear functions,surface fitting,BP neural network and genetic algorithm improved neural network can achieve elevation fitting,their fitting accuracy in high-altitude areas with large elevation differences remains to be improved. To effectively fit the terrain elevation in high altitude areas with large elevation differences,this paper proposes an elevation fitting method based on deep learning,using the second order leveling measurement data of a railway control network in the western region. The method employs a multi-layer perceptron as the core model,and selects the suitable combination of optimizers and activation functions according to their characteristics,to capture the terrain features and elevation change patterns of the region,and achieve high-precision elevation fitting. The paper also analyzes the impact of different combinations of optimizers and activation functions on the model performance. The results show that the deep learning model outperforms the BP neural network and genetic algorithm improved neural network methods in elevation fitting in high-altitude areas with large elevation differences,with the lowest MSE,the smallest MAE,and the R2 closest to 1. Among them,the combination of RAdam optimizer and GELU activation function performs the best. The elevation fitting method of the deep learning model has higher accuracy and better generalization ability,and can effectively adapt to the complex and variable terrain features of high-altitude areas with large elevation differences.

Key words: deep learning, elevation fitting, high altitude areas with large elevation differences, optimizer, activation function

中图分类号: