基于GF-1多光谱影像的河道碍洪物遥感AI识别模型
顾祝军, 刘斌, 朱骊, 丘仕能, 任小龙, 吴家晟, 肖斌, 廖广慧, 姚露露
2024, 0(8):
84-89.
doi:10.13474/j.cnki.11-2246.2024.0815
摘要
(
)
PDF (5569KB)
(
)
参考文献 |
相关文章 |
多维度评价
河道碍洪物是洪涝灾害的重要影响因素,对其进行高效精准监管需引起高度重视。传统的人工巡查难以满足高效精准的应用需求,因此结合人工智能(AI)的遥感技术应用是必经之路。然而诸多的AI模型在遥感应用中的表现尚不清晰,亟待深入探讨。本文以广西大藤峡库区为例,研究河道碍洪物遥感AI识别模型构建方法。基于GF-1遥感影像,构建碍洪物训练样本集,以ResNet101为核心网络,采用当前主流的6种语义分割模型,包括PSPNet、PAN、MANet、FPN、DeepLabV3+和UNet++,进行碍洪物识别模型训练,进而评估其精度和效率。结果表明:①利用ResNet101作为骨干网络的深度学习模型,在河道碍洪物识别中表现优异,所有模型的F1得分均大于0.70,交并比(IoU)均大于0.58。其中,结合洞卷积和全局池化技术的DeepLabV3+模型的F1得分为0.82,IoU为0.72,体现了其在捕捉上下文信息和微观特征方面的显著优势。②PSPNet在参数量较低的情况下表现出较高的处理效率和精度,每批次能处理8个样本,帧率高达10.49。综上,DeepLabV3+在精确识别和轮廓描绘方面的表现尤为突出,而PSPNet在大规模数据处理上显示出巨大潜力。研究结果可为AI遥感模型构建提供参考,并为河道安全监管提供技术支撑。