[1] 贺卫中,向茂西,刘海南,等.榆神府矿区地面塌陷特征及环境问题[J].煤田地质与勘探,2016,44(5):131-135. [2] 杨奇让,胡振琪,韩佳政,等.煤矿区无人机影像采动地裂缝提取方法研究[J].煤炭科学技术,2023,51(6):187-196. [3] VAZQUEZ-NICOLAS J M,ZAMORA E,GONZALEZ-HERNANDEZ I,et al.Towards automatic inspection:crack recognition based on Quadrotor UAV-taken images[C]//Proceedings of 2018 International Conference on Unmanned Aircraft Systems.Dallas:IEEE,2018. [4] ZHAO Yingxiang,ZHOU Lumei,WANG Xiaoli,et al.Highway crack detection and classification using UAV remote sensing images based on CrackNet and CrackClassification[J].Applied Sciences,2023,13(12):7269. [5] 张兴航,朱琳,王威,等.基于对象的地裂缝分步提取方法研究与应用[J].国土资源遥感,2019,31(1):87-94. [6] 胡波,陈志谋,吴洋,等.利用DInSAR技术检测地裂缝分布及走向[J].测绘通报,2018(2):103-106. [7] 孙月敏,杨天亮,卢全中,等.基于SBAS-InSAR的西安市鱼化寨地区地面沉降与地裂缝时空演变特征研究[J].工程地质学报,2022,30(2):553-564. [8] 肖春蕾,郭兆成,张宗贵,等.利用机载LiDAR数据提取与分析地裂缝[J].国土资源遥感,2014,26(4):111-118. [9] ZHANG Fan,HU Zhenqi,LIANG Yusheng,et al.An optimal approach for crack extraction from UAV sub-images after cutting[J].International Journal of Remote Sensing,2022,43(7):2638-2659. [10] LIANG Yusheng,ZHANG Fan,YANG Kun,et al.A surface crack damage evaluation method based on kernel density estimation for UAV images[J].Sustainability,2022,14(23):16238. [11] 王瑞国.基于WorldView-2数据的乌东煤矿地质灾害遥感调查及成因分析[J].国土资源遥感,2016,28(2):132-138. [12] 邓博,许强,董秀军,等.点云与数字图像数据融合的斜坡变形裂缝自动检测[J].武汉大学学报(信息科学版),2023,48(8):1296-1311. [13] 许强,郭晨,董秀军.地质灾害航空遥感技术应用现状及展望[J].测绘学报,2022,51(10):2020-2033. [14] 郭运冲,李孟军,刘名果,等.基于Canny算子的建筑裂缝边缘检测改进算法[J].计算机仿真,2022,39(11):360-365. [15] 赵毅鑫,许多,孙波,等.基于无人机红外遥感和边缘检测技术的采动地裂缝辨识[J].煤炭学报,2021,46(2):624-637. [16] 刘星,莫思特,张江,等.轻量化模型的PeleeNetyolov3地表裂缝识别[J].哈尔滨工业大学学报,2023,55(4):81-89. [17] 李怡静,程浩东,李火坤,等.基于改进U2-Net与迁移学习的无人机影像堤防裂缝检测[J].水利水电科技进展,2022,42(6):52-59. [18] TAO Huaqi,LIU Bingxi,CUI Jinqiang,et al.A convolutional-transformer network for crack segmentation with boundary awareness[C]//Proceedings of 2023 IEEE International Conference on Image Processing.Kuala Lumpur:IEEE,2023:86-90. [19] QI Yaolei,HE Yuting,QI Xiaoming,et al.Dynamic snak econvolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision.Paris:IEEE,2023:6047-6056. [20] CHEN Feng,WU Fei,XU Jing,et al.Adaptive deformable convolutional network[J].Neurocomputing,2021,453(C):853-864. [21] LI Aijin,JIAO Licheng,ZHU Hao,et al.Multitask semantic boundary awareness network for remote sensing image segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:5400314. [22] CHEN Tianxiang,CHU Qi,TAN Zhentao,et al.BAUENet:boundary-aware uncertainty enhanced network for infrared small target detection[C]//Proceedings of 2023 IEEE International Conference on Acoustics,Speech and Signal Processing.Rhodes Island:IEEE,2023:1-5. [23] MEHTA S,RASTEGARI M.MobileViT:light-weight,general-purpose,and mobile-friendly vision transformer[EB/OL].arXiv[2023-12-25].http://arxiv.org/abs/2110.02178. [24] YANG Fan,ZHANG Lei,YU Sijia,et al.Feature pyramid and hierarchical boosting network for pavement crack detection[J].IEEE Transactions on Intelligent Transportation Systems,2020,21(4):1525-1535. [25] ZHANG Lei,YANG Fan,ZHANG Y D,et al.Road crack detection using deep convolutional neural network[C]//Proceedings of 2016 IEEE International Conference on Image Processing.Phoenix:IEEE,2016:3708-3712. [26] LIU Yahui,YAO Jian,LU Xiaohu,et al.DeepCrack:a deep hierarchical feature learning architecture for crack segmentation[J].Neurocomputing,2019,338(C):139-153. |