测绘通报 ›› 2024, Vol. 0 ›› Issue (7): 173-177.doi: 10.13474/j.cnki.11-2246.2024.0731

• 测绘地理信息技术应用案例 • 上一篇    下一篇

激光导航与决策融合的小样本无人机航拍图像分类

谢幸生1, 张永挺1, 丁宗宝1, 江玉欢1, 刘剑2   

  1. 1. 广东电网有限责任公司中山供电局, 广东 中山 528400;
    2. 武汉大学电气与自动化学院, 湖北 武汉 430072
  • 收稿日期:2024-03-06 发布日期:2024-08-02
  • 作者简介:谢幸生(1973—),男,硕士,高级工程师,主要研究方向为高电压及电力系统智能技术。E-mail:305135125@qq.com
  • 基金资助:
    南方电网公司科技项目(GDKJXM20230706)

Enhancing few-shot UAV image classification with laser navigation-assisted decision fusion

XIE Xingsheng1, ZHANG Yongting1, DING Zongbao1, JIANG Yuhuan1, LIU Jian2   

  1. 1. Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhongshan 528400, China;
    2. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
  • Received:2024-03-06 Published:2024-08-02

摘要: 近年来,激光导航技术与小样本无人机航拍图像分类,为土地利用调查、城市规划和环境监测等领域提供了精确的空间定位与大量价值信息,显著提升了分类技术的水平。本文提出了一种激光导航与决策融合技术的小样本无人机航拍图像分类方法,旨在提高分类性能与空间定位精度。通过激光导航系统提供的高精度地理位置信息,优化了航拍图像的特征提取过程,采用自监督学习构建辅助任务,通过旋转和翻转技术增强特征提取器的泛化能力。此外,结合两种自监督范式训练得到的特征提取器,通过逻辑回归分类器完成分类任务,设计了一种新型的决策融合模块,以自动调整各决策权重,提高了分类准确性。通过NWPU-RESISC45和UC Merced数据集上进行试验,结果验证了本文方法的有效性和先进性,展现了激光导航技术在提高小样本无人机航拍图像分类中的潜力。

关键词: 小样本, 无人机航拍图像分类, 决策融合, 自监督学习, 激光导航

Abstract: In recent years, the integration of laser navigation technology with few-shot UAV aerial image classification has provided unprecedented precise spatial positioning and valuable information for fields such as land use survey, urban planning, and environmental monitoring, significantly enhancing the importance of classification technology applications. This study proposes a method of few-shot UAV aerial image classification that integrates laser navigation and decision fusion techniques, aimed at improving classification performance and spatial positioning accuracy. By utilizing the high-precision geographic location information provided by the laser navigation system, the feature extraction process of aerial images is optimized. The study adopts self-supervised learning to construct auxiliary tasks, enhancing the generalization ability of feature extractors through rotation and flipping techniques. Moreover, combining feature extractors trained with two self-supervised paradigms and utilizing a logistic regression classifier for the classification task. A novel decision fusion module is designed to automatically adjust the weights of each decision, enhancing classification accuracy. Experimental results on the NWPU-RESISC45 and UC Merced datasets validate the effectiveness and advanced nature of the proposed method, demonstrate the potential of laser navigation technology in enhancing few-shot UAV aerial image classification.

Key words: few-shot, UAV aerial image classification, decision fusion, self-supervised learning, laser navigation

中图分类号: