测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 40-47.doi: 10.13474/j.cnki.11-2246.2024.1207

• 学术研究 • 上一篇    下一篇

一种顾及空间异质性和噪声的遥感缺失数据重建方法

雷楷烨, 张显云, 刘晶晖, 吴雪   

  1. 贵州大学矿业学院, 贵州 贵阳 550025
  • 收稿日期:2024-03-25 发布日期:2024-12-27
  • 通讯作者: 张显云,E-mail:mec.xyzhang@gzu.edu.cn E-mail:mec.xyzhang@gzu.edu.cn
  • 作者简介:雷楷烨(1999-),女,硕士生,主要研究方向为多源遥感数据融合及地表环境参数反演。E-mail:1318055361@qq.com
  • 基金资助:
    国家自然科学基金(52064005);贵州省省级科技计划(黔科合支撑[2022]一般204;黔科合基础-ZK[2024]一般093)

A reconstruction method for remote sensing missing data considering spatial heterogeneity and noise

LEI Kaiye, ZHANG Xianyun, LIU Jinghui, WU Xue   

  1. School of Mining, Guizhou University, Guiyang 550025, China
  • Received:2024-03-25 Published:2024-12-27

摘要: 针对光学遥感数据常存在大量缺失数据和噪声,以及现有光学遥感缺失数据重建算法大都未充分顾及地理数据空间相关密切程度的问题,本文充分利用地理空间数据间的时空关联性,提出了一种协同随机森林(RF)和地理加权回归(GWR)的重建方法(RF+GWR),分别以GF-4归一化植被指数(NDVI)、MODIS地表温度(LST)和GF-4反射率数据为试验材料,对RF+GWR方法的普适性和缺失重建性能进行了评估。试验结果表明,在所设不同云量掩膜水平下,相比于KNN和RF,RF+GWR方法在GF-4 NDVI、MODIS LST和GF-4波段反射率缺失数据方面的重建性能均有不同程度的改善,均方根误差、平均绝对误差和决定系数最大提升分别为33.07%、30.19%和7.06%。

关键词: 光学遥感, 缺失数据重建, 地理加权回归, 随机森林, K最近邻

Abstract: In response to the common issue of extensive missing data in optical remote sensing data and the insufficient consideration of the spatial correlation of geographic data in existing algorithms for data reconstruction, this paper fully utilizes the spatio-temporal correlation between geographic spatial data and proposes a reconstruction method that combines random forest(RF) and geographically weighted regression(GWR), termed as RF+GWR. Using normalized difference vegetation index (NDVI) from GF-4, MODIS land surface temperature (LST), and GF-4 reflectance data as experimental materials, the universality and missing data reconstruction performance of the RF+GWR method are evaluated. Experimental results show that, under different cloud masking levels as set in the paper, compared to K-nearest neighbor (KNN) and RF methods, the RF+GWR method exhibits varying degrees of improvement in reconstructing missing data of GF-4 NDVI, MODIS LST, and GF-4 band reflectance data. The maximum improvements in root mean square error, mean absolute error, and coefficient of determination are 33.07%, 30.19%, and 7.06%.

Key words: optical remote sensing, missing data reconstruction, geographically weighted regression, random forest, K-nearest neighbor

中图分类号: