测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 84-89.doi: 10.13474/j.cnki.11-2246.2024.1213

• 工程测量分会年会优选论文 • 上一篇    下一篇

基于路侧激光雷达的车辆目标跟踪与定位

郭紫祎, 张红娟, 赵智博, 李必军   

  1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079
  • 收稿日期:2024-07-25 发布日期:2024-12-27
  • 通讯作者: 李必军,E-mail:lee@whu.edu.cn E-mail:lee@whu.edu.cn
  • 作者简介:郭紫祎(2001-),女,硕士,主要研究方向为自动驾驶多源融合定位。E-mail:ziyiguo@whu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(52332010)

Vehicle target tracking and positioning based on roadside LiDAR

GUO Ziyi, ZHANG Hongjuan, ZHAO Zhibo, LI Bijun   

  1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2024-07-25 Published:2024-12-27

摘要: 本文对基于路侧激光雷达的车辆目标跟踪与定位算法展开研究,提出了一种基于卡尔曼滤波的算法流程。首先,基于反光条的路侧激光雷达位姿标定,构建背景点云地图,对路侧激光雷达采集的点云数据进行背景差分滤波,只保留机动车、非机动车、行人等前景点云数据,对前景点云进行基于密度的DBSCAN聚类,将点云划分为点云簇;然后,训练SVM分类器,用提取的点云簇特征对其进行基于SVM的目标分类识别;最后,通过最近邻算法实现目标的帧间关联,用线性卡尔曼滤波对目标物体的轨迹进行预测和更新。在精度评定的部分,利用相对位置误差和绝对轨迹误差对标定结果和算法定位结果进行精度分析。从分析结果可知,本文提出的带有卡尔曼滤波的轨迹估计方法得到的优化后的平滑轨迹更符合车辆的实际运行情况,可以明显提高目标跟踪精度。

关键词: 路侧激光雷达, 目标识别, 目标跟踪, 卡尔曼滤波, 点云滤波

Abstract: This paper proposes a vehicle target tracking and localization algorithm using roadside LiDAR based on Kalman filter. Firstly, the position calibration of roadside LiDAR is performed based on reflective strips; the background point cloud map is constructed, and the background differential filtering is performed on the point cloud data collected by roadside LiDAR, and only the foreground point cloud data such as motor vehicles, non-motor vehicles and pedestrians are retained; the density-based DBSCAN clustering is performed on the foreground point cloud, and the point cloud is divided into point cloud clusters; then the SVM classifier is trained, and the extracted point cloud cluster features are used for SVM-based target classification recognition; finally, the inter-frame association of targets is realized by the nearest neighbor algorithm, and the trajectories of target objects are predicted and updated by linear Kalman filtering. In the part of accuracy evaluation, the calibration results and the algorithm positioning results are analyzed for accuracy using relative position error and absolute trajectory error. From the analysis results, it can be seen that the optimized smooth trajectory obtained by the trajectory estimation method with Kalman filter is more consistent with the actual operation of the vehicle and can significantly improve the target tracking accuracy.

Key words: roadside LiDAR, object recognition, object tracking, Kalman filter, point cloud filtering

中图分类号: